- Proto文件从入门到精通——现代分布式系统通信的基石(含实战案例)
筏.k
gRPCc++rpc服务器
gRPC核心技术详解:Proto文件从入门到精通——现代分布式系统通信的基石(含实战案例)更新时间:2025年7月18日️标签:gRPC|ProtocolBuffers|Proto文件|微服务|分布式系统|RPC通信|接口定义文章目录前言一、基础概念:Proto文件究竟是什么?1.什么是Proto文件?2.传统通信vsProto通信二、语法详解:Proto文件的构成要素1.基本语法结构2.数据类型
- Redis面试精讲 Day 3:Redis持久化机制详解
在未来等你
Redis面试专栏Redis面试题持久化RDBAOF数据库缓存
【Redis面试精讲Day3】Redis持久化机制详解文章标签Redis,面试题,持久化,RDB,AOF,数据库,缓存,后端开发,分布式系统文章简述本文是"Redis面试精讲"系列第3天内容,深入解析Redis持久化机制这一面试高频考点。文章从基础概念出发,详细剖析RDB和AOF两种持久化方式的实现原理、触发机制和优缺点对比,提供多语言客户端操作示例和性能测试数据。针对"如何选择持久化策略"、"A
- 分布式系统中优化ELK日志采集性能
Alex艾力的IT数字空间
elk微服务中间件架构ux安全性测试可用性测试
架构设计、组件调优、资源分配等多维度入手一、架构优化:分布式与解耦设计分层采集与缓冲Filebeat轻量级采集:在每台服务器部署Filebeat替代Logstash作为日志收集器,降低资源占用(CPU/内存减少70%以上)。引入缓冲队列:通过Redis或Kafka作为日志缓冲池,缓解Logstash或Elasticsearch的突发流量压力,避免数据丢失(如Logstash异常时Redis暂存数据
- RabbitMQ深度解析:从核心概念到实战应用
JouJz
rabbitmqruby分布式
RabbitMQ深度解析:从核心概念到实战应用引言:现代分布式系统的通信枢纽在当今复杂的分布式系统架构中,消息队列已成为不可或缺的基础组件。作为最受欢迎的开源消息代理之一,RabbitMQ以其可靠性、灵活性和跨平台能力赢得了广泛青睐。本文将全面剖析RabbitMQ的核心机制、工作模式及高级特性,帮助开发者掌握这一强大的异步通信工具。一、RabbitMQ核心概念解析1.1基本架构模型RabbitMQ
- Kafka深度解析:架构、原理与应用实践
JouJz
kafka架构linq
Kafka深度解析:架构、原理与应用实践引言在现代分布式系统架构中,消息队列作为系统解耦、异步通信的核心组件发挥着至关重要的作用。而在众多消息队列解决方案中,ApacheKafka凭借其卓越的性能、高吞吐量和可靠性,已成为企业级数据管道的首选技术。本文将深入剖析Kafka的核心架构、工作原理以及实践应用,帮助开发者全面掌握这一强大的分布式消息系统。一、Kafka概述与核心概念1.1Kafka的诞生
- 深入理解红锁
未来并未来
redis数据库缓存
在构建高并发、高可用的分布式系统时,我们常常会遇到这样一个核心挑战:如何确保多个服务实例能够安全、有序地访问共享资源,避免竞态条件(RaceCondition)和数据不一致?传统单机环境下的锁机制(如Java的synchronized或ReentrantLock)在分布式场景下显得力不从心。于是,分布式锁应运而生,而基于Redis的分布式锁因其高性能和简单性而被广泛应用。然而,单节点Redis锁在
- Redis分布式锁深度剖析:从原理到高可用实践
JouJz
redis分布式wpf
Redis分布式锁深度剖析:从原理到高可用实践引言:分布式环境下的锁之殇在分布式系统中,共享资源互斥访问是保证数据一致性的核心挑战。传统单机锁(如synchronized)在跨进程场景下完全失效,这就是分布式锁的用武之地。Redis凭借其高性能、原子操作等特性,成为实现分布式锁的主流方案。本文将深入解析Redis分布式锁的实现原理、典型问题及工业级解决方案。一、分布式锁的本质要求1.1必须满足的核
- JAVA中分布式环境中如何实现单点登录与session共享
在远方的你等我
在单服务器web应用中,登录用户信息只需存在该服务的session中,这是我们几年前最长见的办法。而在当今分布式系统的流行中,微服务已成为主流,用户登录由某一个单点服务完成并存储session后,在高并发量的请求(需要验证登录信息)到达服务端的时候通过负载均衡的方式分发到集群中的某个服务器,这样就有可能导致同一个用户的多次请求被分发到集群的不同服务器上,就会出现取不到session数据的情况,于是
- 分布式学习笔记_04_复制模型
NzuCRAS
分布式学习笔记架构后端
常见复制模型使用复制的目的在分布式系统中,数据通常需要被分布在多台机器上,主要为了达到:拓展性:数据量因读写负载巨大,一台机器无法承载,数据分散在多台机器上仍然可以有效地进行负载均衡,达到灵活的横向拓展高容错&高可用:在分布式系统中单机故障是常态,在单机故障的情况下希望整体系统仍然能够正常工作,这时候就需要数据在多台机器上做冗余,在遇到单机故障时能够让其他机器接管统一的用户体验:如果系统客户端分布
- ZooKeeper架构及应用场景详解
走过冬季
学习笔记zookeeper架构分布式
ZooKeeper是一个开源的分布式协调服务,由Apache软件基金会维护。它旨在为分布式应用提供高性能、高可用、强一致性的基础服务,解决分布式系统中常见的协调难题(如配置管理、命名服务、分布式锁、服务发现、领导者选举等)。核心软件架构ZooKeeper的架构设计围绕其核心目标(协调)而优化,主要包含以下关键组件:集群模式(Ensemble):ZooKeeper通常部署为集群(称为ensemble
- zookeeper etcd区别
sun007700
zookeeperetcd分布式
ZooKeeper与etcd的核心区别体现在设计理念、数据模型、一致性协议及适用场景等方面。ZooKeeper基于ZAB协议实现分布式协调,采用树形数据结构和临时节点特性,适合传统分布式系统;而etcd基于Raft协议,以高性能键值对存储为核心,专为云原生场景优化,是Kubernetes等容器编排系统的默认存储组件。12架构与设计目标差异ZooKeeper。设计定位:专注于分
- 分布式选举算法<一> Bully算法
分布式选举算法详解:Bully算法引言在分布式系统中,节点故障是不可避免的。当主节点(Leader)发生故障时,系统需要快速选举出新的主节点来保证服务的连续性。Bully算法是一种经典的分布式选举算法,以其简单高效的特点被广泛应用于各种分布式系统中。什么是Bully算法?Bully算法是一种基于优先级的分布式选举算法。每个节点都有一个唯一的ID,ID值越大的节点优先级越高。当主节点故障时,优先级最
- 【Kafka专栏 13】Kafka的消息确认机制:不是所有的“收到”都叫“确认”!
作者名称:夏之以寒作者简介:专注于Java和大数据领域,致力于探索技术的边界,分享前沿的实践和洞见文章专栏:夏之以寒-kafka专栏专栏介绍:本专栏旨在以浅显易懂的方式介绍Kafka的基本概念、核心组件和使用场景,一步步构建起消息队列和流处理的知识体系,无论是对分布式系统感兴趣,还是准备在大数据领域迈出第一步,本专栏都提供所需的一切资源、指导,以及相关面试题,立刻免费订阅,开启Kafka学习之旅!
- 服务实现99.99%高可用的核心措施
在分布式系统中,高可用性(HA)是衡量服务可靠性的核心指标。99.99%的可用性意味着系统每年的停机时间不超过约52.6分钟,这对金融交易、电信服务等关键业务至关重要。一、冗余设计与故障转移原理:通过冗余部署消除单点故障,确保部分节点故障时服务仍可用。故障转移机制自动将流量切换至健康节点,缩短服务中断时间。Java服务实现:集群部署:使用SpringCloudAlibaba或Dubbo构建微服务集
- 分布式事务解决方案总结:本地消息异步确认、可靠消息最终一致性、最大努力通知
码到三十五
面试攻关分布式springcloudspringboot
❃博主首页:「码到三十五」,同名公众号:「码到三十五」☠博主专栏:♝博主的话:搬的每块砖,皆为峰峦之基;公众号搜索「码到三十五」关注这个爱发技术干货的coder,一起筑基分布式系统中事务是一个重要挑战,先从从实现原理、技术细节、适用场景三个维度,对三种主流分布式事务解决方案进行简单总结。一、本地消息异步确认方案实现原理该方案通过「本地事务+消息表」机制实现最终一致性,核心思想是将业务操作与消息发送
- Spring Boot 在后端领域的微服务负载均衡实践
AI大模型应用实战
springboot微服务负载均衡ai
SpringBoot在后端领域的微服务负载均衡实践关键词:SpringBoot、微服务、负载均衡、Ribbon、服务发现、高可用、分布式系统摘要:本文深入探讨了SpringBoot在微服务架构中实现负载均衡的实践方法。我们将从基础概念出发,详细分析负载均衡的核心原理,介绍SpringCloud生态中的关键组件(如Ribbon、Eureka等),并通过完整的代码示例展示如何在实际项目中实现高效的负载
- 【Rust日报】使用Rust开发分布式系统的经验教训
Fjall-一个安全Rust的KV存储引擎Fjall是一个可嵌入的基于LSM的forbid-unsafeRust键值存储引擎。它的目标是成为一个可靠且可预测但性能优异的通用KV存储引擎,适用于小型数据集,尤其是大于内存大小的数据集。我刚刚发布了1.0版本,该版本稳定了其数据格式,适用于所有未来的1.x.x版本。它的设计受到了LevelDB/RocksDB架构的重大影响,并且通常具有相似的性能。它具
- 千亿级消息引擎 Apache Pulsar 深度剖析:架构原理、设计哲学与实战实践
北漂老男人
Pulsarapache架构学习方法运维
千亿级消息引擎ApachePulsar深度剖析:架构原理、设计哲学与实战实践Pulsar不止是消息队列,更是下一代云原生流平台。本文将深入剖析其底层架构、核心特性、关键差异、源码细节、调优技巧与企业级实践路径,力求做到“知其然,知其所以然”。一、架构哲学:分层解耦+IO隔离1.1三层架构模型(Broker+BookKeeper+ZooKeeper)Pulsar基于分布式系统经典设计范式:计算与存储
- Redis 分布式锁实现与实践
佑瞻
数据库与知识图谱redis分布式数据库
在分布式系统架构中,多个独立进程对共享资源的并发访问控制是常见需求,分布式锁作为解决这一问题的关键技术,在缓存更新、任务调度、库存管理等场景中发挥着重要作用。本文将从基础原理出发,详细阐述基于Redis的分布式锁实现方案,包括单实例模式与Redlock算法,并探讨其在实际应用中的关键考量。分布式锁核心概念分布式锁是一种跨进程、跨机器的同步机制,用于保证多个分布式节点对共享资源的互斥访问。一个可靠的
- 4.服务注册发现:微服务的神经系统
在微服务架构中,服务之间不再是固定连接,而是高度动态、短暂存在的。如何让每个服务准确找到彼此,是分布式系统治理的核心问题之一。服务注册发现机制,正如神经系统之于人体,承担着连接、协调、感知变化的关键角色。本文将围绕Netflix开源的服务注册发现组件Eureka展开,深入剖析其原理,并以SpringCloud实战为导向,帮助你掌握服务治理的第一步。一、为什么需要服务注册发现?在单体架构中,服务调用
- 2.Spring Cloud生态全景解析:核心组件、能力边界与定位
碎风影
SpringCloud深度解析springcloudspring后端
导语:SpringCloud并非单一框架,而是基于SpringBoot构建的分布式系统工具集。它通过标准化封装,将服务发现、配置管理、熔断限流等复杂基础设施转化为开箱即用的组件,让开发者聚焦业务逻辑。本文将系统解析其核心组成、与SpringBoot的共生关系,并客观审视其能力边界,助您构建清晰的微服务技术选型地图。一、核心基石:SpringBoot与SpringCloud的共生关系关键结论:Spr
- Kafka浅学
文文Tao
kafkajava分布式
Kafka应用场景?异步解耦流量消锋Kafka消息队列特点?Kafka吞吐量高:因为他存储数据时,磁盘顺序存储,磁盘的顺序存储速度很快。Kafka持久化消息:这些消息日志可以被重复读取和永久保留可以运行时动态扩展伸缩:Kafka是分布式系统:它以集群的方式运行,早期依赖Zookeeper对于Kafka的作用是什么?Zookeeper是分布式协调服务。Zookeeper作用:用于在Kafka集群中不
- 探秘阿里云消息队列:解锁分布式系统的异步通信奥秘
云资源服务商
阿里云云计算中间件
阿里云消息队列:分布式架构的基石在当今数字化快速发展的时代,分布式系统已成为企业构建高可用、高性能应用的关键架构。而消息队列,作为分布式系统中的重要组件,犹如基石一般,支撑着整个架构的稳定运行。它能够有效地解决分布式系统中的异步通信、解耦、削峰填谷等问题,为系统的可靠性和扩展性提供了强大的保障。阿里云作为云计算领域的领军者,其推出的阿里云消息队列凭借着卓越的性能、高可靠性以及丰富的功能,成为了众多
- Java微服务框架技术选型全景报告
chanalbert
技术选型javajava微服务框架技术选型
一、核心框架深度解析1.1Spring生态体系组件关键特性适用场景SpringBoot-约定优于配置+自动装配(Starter)-内嵌Tomcat/Jetty容器-Actuator监控端点企业级单体应用/传统系统迁移SpringCloud-微服务全家桶(Eureka/Zuul/Config)-强事务管理(SpringTX)-生态兼容性最佳复杂分布式系统WebFlux-响应式编程模型(Reactor
- Zookeeper的典型应用场景?
大家好,我是锋哥。今天分享关于【Zookeeper的典型应用场景?】面试题。希望对大家有帮助;Zookeeper的典型应用场景?超硬核AI学习资料,现在永久免费了!Zookeeper是一个开源的分布式协调服务,它被广泛应用于需要分布式系统协调的场景。以下是Zookeeper的一些典型应用场景:1.分布式锁在分布式系统中,多个节点可能需要对共享资源进行访问,这时就需要确保访问的排他性。Zookeep
- 分布式系统与RPC框架介绍
jjkkzzzz
分布式系统rpc
分布式系统是什么?分布式系统是由多台独立的计算节点通过网络协同组成的系统,多个节点对外表现为一个整体,共同完成一个业务目标。这些节点可以是不同物理机、虚拟机、容器,也可以位于不同地理位置。分布式系统特点:多节点协作:系统中的多个服务进程分布在不同机器上。网络通信:节点间通过网络(通常通过RPC)通信。透明性:用户感知不到后端有多少节点。容错能力:节点故障不会影响整体系统的可用性。为什么需要分布式系
- Rust之从零开始构建分布式事务数据库
莲华君
rust分布式数据库
目录第一部分:Rust基础与数据库基础Rust语言基础Rust的特点与优势Rust的内存安全与并发模型Rust工具链与开发环境搭建数据库基本原理关系型数据库与非关系型数据库数据库的事务管理原理ACID与BASE理论分布式系统与数据库的挑战第二部分:分布式数据库核心架构分布式数据库的设计原则CAP理论与BASE理论数据分片与复制数据一致性与可用性的权衡数据持久化与恢复策略分布式事务的基础事务的ACI
- Redis 分布式锁详解
wcy0310
redisredis分布式
Redis分布式锁的实现方法Redis分布式锁是一种利用Redis实现跨进程、跨服务器的互斥锁机制,常用于解决分布式系统中的并发控制问题。以下是几种常见的实现方式及其关键细节。基于SETNX和EXPIRE的实现使用SETNX(SETifNoteXists)命令尝试设置一个键,如果键不存在则设置成功,返回1;否则返回0。结合EXPIRE设置锁的超时时间,避免死锁。SETNXlock_keyuniqu
- 特别放送:关于一个无法修复的系统级Bug
杨小扩
bug程序人生
大家好,我是阿威。熟悉我的朋友都知道,我的博客基本只聊三件事:代码、架构和偶尔的职业生涯吐槽。但今天,我想破个例。起因是上周熬夜排查一个线上问题,一个分布式系统,流量洪峰一来,某个下游服务就雪崩。查了半天日志,发现系统把警报全发给了那些调用量只有个位数的用户API,说它们“行为异常,导致系统延迟”。而真正的根源,是一个拥有无限重试和最高优先级的内部服务,像个失控的while(true)循环,把整个
- 构建高效分布式系统:bRPC组合Channels与HTTP/H2访问指南
Jay Kay
brpcc++http网络协议网络brpc
构建高效分布式系统:bRPC组合Channels与HTTP/H2访问指南引言在现代分布式系统中,下游服务访问的复杂性日益增加。bRPC通过组合Channels和HTTP/H2访问优化,提供了解决多层级RPC调用、负载均衡和协议兼容性问题的完整方案。本文将深入解析两大核心功能,助力开发者构建高性能服务。一、组合Channels:复杂访问模式的优雅抽象1.核心价值统一接口:同步/异步调用、超时控制、取
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs