Matlab图像处理学习笔记(八):用广义霍夫变换筛选sift特征点

经过几天的学习研究,终于完成了广义霍夫变换(Generalised Hough transform)对特征点的筛选。此法不仅仅针对sift特征点,surf,Harris等特征点均可适用。

这几天我发现关于广义霍夫变换的资料少之又少,不过经过仔细研读各方的资料,我对Generalised Hough transform也有了一点认识,如果有理解的不对的地方,还请指正。

在介绍Generalised Hough transform之前,先简要介绍一下霍夫变换。我们都知道,用霍夫变换可以检测直线,圆,椭圆等,或者说只要该形状是可解析的,都可以用霍夫变换来进行识别。我认为,霍夫变换的关键点有两点:

1、投票机制的引入。

2、参数空间的转换。

举个例子,好比一条线段,在x-y坐标系下,一条直线的特征并不是那么明显的,但在转换到p,theta参数空间后,一条线段的特征就很明显,再加上投票机制,如果一个累加单元中有较大值,则可以判定存在一条线段。圆也一样。但直线、圆、椭圆等这些形状其实都是可解析的,也就是可以用一个方程式来表达,如果现在有一个不规则形状,他就没办法了。因此,D.H. Ballard在1981年将霍夫变换进行推广,提出了广义霍夫变换(Generalised Hough transform)。好了,下面进入本文的关键,广义霍夫变换(Generalised Hough transform)。

本文的主要参考资料如下:

%referrence:
% David G. Lowe,Distinctive Image Features from Scale-Invariant Keypoints
% David G. Lowe,Object Recognition from Local Scale-Invariant Features
% D.H.

你可能感兴趣的:(Matlab图像处理学习笔记)