import os, sys, glob, shutil, json
from PIL import Image
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
torch.manual_seed(0)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
import torchvision.models as models
import torchvision.transforms as transforms
import torch.nn as nn
from torch.utils.data.dataset import Dataset
import matplotlib.pyplot as plt
class SVHNDataset(Dataset):
def __init__(self, img_path, img_label, transform=None):
self.img_path = img_path
self.img_label = img_label
if transform is not None:
self.transform = transform
else:
self.transform = None
def __getitem__(self, index):
img = Image.open(self.img_path[index]).convert('RGB')
if self.transform is not None:
img = self.transform(img)
lbl = np.array(self.img_label[index], dtype=np.int)
lbl = list(lbl) + (5 - len(lbl)) * [10]
return img, torch.from_numpy(np.array(lbl[:5]))
def __len__(self):
return len(self.img_path)
class SVHN_Model1(nn.Module):
def __init__(self):
super(SVHN_Model1, self).__init__()
self.cnn = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),
nn.ReLU(),
nn.Dropout(0.25),
nn.MaxPool2d(2),
nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),
nn.ReLU(),
nn.Dropout(0.25),
nn.MaxPool2d(2),
)
self.fc1 = nn.Linear(32 * 3 * 7, 11)
self.fc2 = nn.Linear(32 * 3 * 7, 11)
self.fc3 = nn.Linear(32 * 3 * 7, 11)
self.fc4 = nn.Linear(32 * 3 * 7, 11)
self.fc5 = nn.Linear(32 * 3 * 7, 11)
self.fc6 = nn.Linear(32 * 3 * 7, 11)
def forward(self, img):
feat = self.cnn(img)
feat = feat.view(feat.shape[0], -1)
c1 = self.fc1(feat)
c2 = self.fc2(feat)
c3 = self.fc3(feat)
c4 = self.fc4(feat)
c5 = self.fc5(feat)
c6 = self.fc6(feat)
return c1, c2, c3, c4, c5, c6
def train(train_loader, model, criterion, optimizer):
model.train()
for i, (input, target) in enumerate(train_loader):
target = target.long()
c0, c1, c2, c3, c4, c5 = model(input)
loss = criterion(c0, target[:, 0]) + \
criterion(c1, target[:, 1]) + \
criterion(c2, target[:, 2]) + \
criterion(c3, target[:, 3]) + \
criterion(c4, target[:, 4])
loss /= 5
optimizer.zero_grad()
loss.backward()
optimizer.step()
def validate(val_loader, model, criterion):
model.eval()
val_loss = []
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
target = target.long()
c0, c1, c2, c3, c4, c5 = model(input)
loss = criterion(c0, target[:, 0]) + \
criterion(c1, target[:, 1]) + \
criterion(c2, target[:, 2]) + \
criterion(c3, target[:, 3]) + \
criterion(c4, target[:, 4])
loss /= 5
val_loss.append(loss.item())
return np.mean(val_loss)
def predict(test_loader, model, tta=10):
model.eval()
test_pred_tta = None
for _ in range(tta):
test_pred = []
with torch.no_grad():
for i, (input, target) in enumerate(test_loader):
c0, c1, c2, c3, c4, c5 = model(input)
output = np.concatenate([c0.data.numpy(), c1.data.numpy(),
c2.data.numpy(), c3.data.numpy(),
c4.data.numpy(), c5.data.numpy()], axis=1)
test_pred.append(output)
test_pred = np.vstack(test_pred)
if test_pred_tta is None:
test_pred_tta = test_pred
else:
test_pred_tta += test_pred
return test_pred_tta
if __name__ == '__main__':
train_path = glob.glob('Dataset/mchar_train/*.png')
train_path.sort()
train_json = json.load(open('Dataset/mchar_train.json'))
train_label = [train_json[x]['label'] for x in train_json]
print(len(train_path), len(train_label))
train_loader = torch.utils.data.DataLoader(
SVHNDataset(train_path, train_label,
transforms.Compose([
transforms.Resize((64, 128)),
transforms.RandomCrop((60, 120)),
transforms.ColorJitter(0.3, 0.3, 0.2),
transforms.RandomRotation(5),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])),
batch_size=40,
shuffle=True,
num_workers=10,
)
val_path = glob.glob('Dataset/mchar_val/*.png')
val_path.sort()
val_json = json.load(open('Dataset/mchar_val.json'))
val_label = [val_json[x]['label'] for x in val_json]
print(len(val_path), len(val_label))
val_loader = torch.utils.data.DataLoader(
SVHNDataset(val_path, val_label,
transforms.Compose([
transforms.Resize((60, 120)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])),
batch_size=40,
shuffle=False,
num_workers=10,
)
model = SVHN_Model1()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), 0.001)
best_loss = 1000.0
use_cuda = False
if use_cuda:
model = model.cuda()
for epoch in range(2):
train_loss = train(train_loader, model, criterion, optimizer)
val_loss = validate(val_loader, model, criterion)
val_label = [''.join(map(str, x)) for x in val_loader.dataset.img_label]
val_predict_label = predict(val_loader, model, 1)
val_predict_label = np.vstack([
val_predict_label[:, :11].argmax(1),
val_predict_label[:, 11:22].argmax(1),
val_predict_label[:, 22:33].argmax(1),
val_predict_label[:, 33:44].argmax(1),
val_predict_label[:, 44:55].argmax(1),
]).T
val_label_pred = []
for x in val_predict_label:
val_label_pred.append(''.join(map(str, x[x != 10])))
val_char_acc = np.mean(np.array(val_label_pred) == np.array(val_label))
print('Epoch: {0}, Train loss: {1} \t Val loss: {2}'.format(epoch, train_loss, val_loss))
print(val_char_acc)
if val_loss < best_loss:
best_loss = val_loss
torch.save(model.state_dict(), './model.pt')
test_path = glob.glob('Dataset/mchar_test_a/*.png')
test_path.sort()
test_label = [[1]] * len(test_path)
print(len(val_path), len(val_label))
test_loader = torch.utils.data.DataLoader(
SVHNDataset(test_path, test_label,
transforms.Compose([
transforms.Resize((64, 128)),
transforms.RandomCrop((60, 120)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])),
batch_size=40,
shuffle=False,
num_workers=10,
)
test_predict_label = predict(test_loader, model, 1)
test_label = [''.join(map(str, x)) for x in test_loader.dataset.img_label]
test_predict_label = np.vstack([
test_predict_label[:, :11].argmax(1),
test_predict_label[:, 11:22].argmax(1),
test_predict_label[:, 22:33].argmax(1),
test_predict_label[:, 33:44].argmax(1),
test_predict_label[:, 44:55].argmax(1),
]).T
test_label_pred = []
for x in test_predict_label:
test_label_pred.append(''.join(map(str, x[x != 10])))
import pandas as pd
df_submit = pd.read_csv('.Dataset/test_A_sample_submit.csv')
df_submit['file_code'] = test_label_pred
df_submit.to_csv('renset18.csv', index=None)