【持续更新】leetcode算法-数组篇

会在近期陆续地完成数组篇的整理,希望对找工作的小伙伴有所帮助。
 
1、Two Sum:两数相加为一固定值,求其下标。一次遍历数组,用一个hash表存储已经访问过的数及其下标,对于新访问的数value,查hash表中是否有target-value的值,如果有,程序输出,如果没有,继续访问下一个数直到访问完。
 
 1 public int[] twoSum(int[] nums, int target) {
 2     Map hash = new HashMap<>();
 3     for (int i=0; i){
 4         if(hash.containsKey(target-nums[i])){
 5             return new int[]{hash.get(target-nums[i]),i};
 6         }else{
 7             hash.put(nums[i],i);
 8         }
 9     }
10     return new int[]{0,0};
11 }
 
2、Median of Two Sorted Arrays:求两个有序数组的中位数。其实就是求第k大的数。首先比较两数组k/2处的数的大小,若a[k/2]
 
3、Container With Most Water:给一个数组,每一个元素表示一个高度,找两个元素和x轴围城的容器装下水的最大量。直接的做法是暴力求解,O(n2)复杂度。优化做法是,从两头向中间靠,比较两头元素的大小,大的不动,小的往中间移动。
 
 1 public int maxArea(int[] height) {
 2     int max = 0;
 3     int left = 0;
 4     int right = height.length - 1;
 5     int curArea = 0;
 6     while (left < right) {
 7         curArea = (right - left) * (height[right] < height[left] ? height[right--] : height[left++]);
 8         if (curArea > max)
 9             max = curArea;
10     }
11     return max;
12 }
 
4、3Sum:在数组中求三个数相加等于0。先排序,然后遍历数组,两重循环。3个指针,外层循环遍历数组,内层循环遍历外层循环后面的数,如果和大于0,则指针往左移动,如果小于0,则往右移动。
 
 1 public List> threeSum(int[] nums) {
 2     List> list = new ArrayList>();
 3     Set> set = new HashSet<>();
 4     sort(nums);
 5     int j = 0;
 6     int k = 0;
 7     for (int i = 0; i < nums.length - 2; i++) {
 8         j = i + 1;
 9         k = nums.length - 1;
10         while (j < k) {
11             int x = nums[i] + nums[j] + nums[k];
12             if (x == 0) {
13                 List innerList = new ArrayList<>();
14                 innerList.add(nums[i]);
15                 innerList.add(nums[j]);
16                 innerList.add(nums[k]);
17                 if (!set.contains(innerList)) {
18                     set.add(innerList);
19                     list.add(innerList);   
20                 }
21                 j = j + 1;
22                 k = k - 1;
23             } else if (x > 0) {
24                 k = k - 1;
25             } else {
26                 j = j + 1;
27             }
28         }
29     }
30     return list;
31 }
 
5、3Sum Closest:类似3Sum
 
6、4Sum:类似3Sum
 
7、Remove Duplicates from Sorted Array:有序数组去重,返回剩余数的个数
 
 1 public int removeDuplicates(int[] nums) {
 2     if (nums.length == 0)    return 0;
 3     int index = 0;
 4     for (int i = 1; i < nums.length; i++) {
 5         if (nums[index] != nums[i]) {
 6             nums[++index] = nums[i];
 7         }
 8     }
 9     return index + 1;
10 }
 
8、Remove Element:数组中移除给定的数,返回剩余数的个数
 
1 public int removeElement(int[] nums, int val) {
2     int index=0;
3     for(int i =0; i){
4         if(nums[i] != val) nums[index++]=nums[i];
5     }
6     return index;
7 }
 
9、Next Permutation:数组表示一个整数,返回下一个排列数,如果没有比原数组大的排列数,则返回最小的排列数
 
 1 public void nextPermutation(int[] nums) {
 2     if(nums==null || nums.length<2) return;
 3     int len = nums.length;
 4     // 从右向左遍历,找到第一个前一个数小于后一个的数(升序对),记value=nums[i-1]
 5     int i = len - 1;
 6     while (i>0 && nums[i-1]>=nums[i]){
 7         i--;
 8     }
 9     if(i==0){
10         reverse(nums, 0, len-1);     // 反转数组
11     }else{
12         // 从右向左遍历,找到第一个大于value的数
13         int j = i-1;
14         int k = len -1;
15         while(nums[j]>=nums[k]){
16             k--;
17         }
18         int temp = nums[j];
19         nums[j] = nums[k];
20         nums[k] = temp;
21         reverse(nums, i, len-1);
22     }
23 }
 
10、Search in Rotated Sorted Array:在循环有序的数组(数没有重复)中查询一个数,返回这个数的下标,没有则返回-1
 
 1 public int search(int[] nums, int target) {
 2     if(nums==null || nums.length==0) return -1;
 3     // 找到最小值,即旋转中心
 4     int n=nums.length;
 5     int lo=0, hi=n-1;
 6     while(lo<hi){
 7         int mid=(hi-lo)/2+lo;
 8         if(nums[mid]>nums[hi]) lo=mid+1;
 9         else hi=mid;
10     }
11     int pivot=lo;
12     lo=0;
13     hi=n-1;
14     while(lo<=hi){
15         int mid=(hi-lo)/2+lo;
16         int realmid=(mid+pivot)%n;
17         if(nums[realmid]==target) return realmid;
18         else if(nums[realmid]>target) hi=mid-1;
19         else lo=mid+1;
20     }
21     return -1;
22 }
 
11、Search for a Range:找到给定的数在有序数组中的下标区间,两次二分搜索,一次找左边界,一次找右边界
 
 1 public int[] searchRange(int[] nums, int target) {
 2     int[] ret = {-1,-1};
 3     if(nums==null || nums.length==0) return nums;
 4     int n=nums.length;
 5     int lo=0, hi=n-1;
 6     while(lo<hi){
 7         int mid=(hi-lo)/2+lo;
 8         if(nums[mid];
 9         else hi=mid;
10     }
11     if(nums[lo]!=target) return ret;
12     ret[0]=lo;
13  
14     lo=0;
15     hi=n-1;
16     while(lo<hi){
17         int mid=(hi-lo)/2+lo+1;     // 保证偏向右边
18         if(nums[mid]>target) hi=mid-1;
19         else lo=mid;
20     }
21     ret[1]=lo;
22     return ret;
23 }

 

12、Search Insert Position:二分查找
 
13、Combination Sum:求数组中元素等于给定的数的集合,允许重复,回溯法
 
 1 public List> combinationSum(int[] candidates, int target) {
 2     List> res = new ArrayList>();
 3     if(candidates == null || candidates.length == 0)
 4         return res;
 5     List list = new ArrayList<>();
 6     helper(candidates, target, 0, list, res);
 7     return res;
 8 }
 9 public void helper(int[] candidates, int target, int start, List temp, List> res) {
10     if(target == 0){
11         res.add(new ArrayList<>(temp));
12         return;
13     }
14     if(target < 0) return;
15     for (int i = start; i < candidates.length; i++){
16         temp.add(candidates[i]);
17         helper(candidates, target-candidates[i], i, temp, res);
18         temp.remove(temp.size() - 1);
19     }
20 }

 

14、Combination Sum II:求数组中元素等于给定的数的集合,数组中的元素只能用一次,回溯法
 
 1 public List> combinationSum2(int[] candidates, int target) {
 2     List> res = new ArrayList>();
 3     if(candidates.length == 0 || candidates == null)
 4         return res;
 5     List list = new ArrayList<>();
 6     Arrays.sort(candidates);
 7     helper(candidates, target, 0, list, res);
 8     return res;
 9 }
10 public void helper(int[] candidates, int target, int start, List temp, List> res) {
11     if(target == 0){
12         res.add(new ArrayList<>(temp));
13         return;
14     }
15     else if(target < 0)
16         return;
17     else {
18         for (int i = start; i < candidates.length; i++){
19             // 跳过重复元素
20             if(i>start && candidates[i]==candidates[i-1])
21                 continue;
22             temp.add(candidates[i]);
23             helper(candidates, target-candidates[i], i+1, temp, res);
24             temp.remove(temp.size() - 1);
25         }
26     }
27 }

 

15、First Missing Positive:无序数组,找到第一个缺失的正数,主要思想是将正确的数放到正确的位置上
 
 1 public int firstMissingPositive(int[] nums) {
 2     if(nums == null || nums.length == 0) return 1;
 3     int n = nums.length;
 4     for (int i=0; i){
 5         while(nums[i]>0 && nums[i]<=n && nums[i]!=nums[nums[i]-1]) swap(nums, i, nums[i]-1);
 6     }
 7     for(int i=0; i){
 8         if(nums[i]!=i+1) return i+1;
 9     }
10     return n+1;
11 }
 
16、Trapping Rain Water:求最大的积水量。解法:先找到最大高度的下标,然后分别从两边往最大高度靠,同时维护一个当前最大值变量,积水量就是当前最大值减去当前高度。
 
 1 public int trap(int[] height) {
 2     if (height==null || height.length <= 2) return 0;
 3     // 找最大高度
 4     int maxIndex=0;
 5     int max=0;
 6     for(int i=0; i){
 7         if(height[i]>max){
 8             max=height[i];
 9             maxIndex=i;
10         }
11     }
12     int result=0;
13     int curMax=0;
14     for(int i=0; i){
15         if(height[i]<curMax){
16             result += curMax-height[i];
17         }else{curMax=height[i];}
18     }
19     curMax=0;
20     for(int i=height.length-1; i>maxIndex; i--){
21         if(height[i]height[i];
22         else curMax=height[i];
23     }
24     return result;
25 }

 

17、Jump Game II:给定一个数组,求数组头到数组尾的最少的步数。贪心法。
 
 1 public int jump(int[] nums) {
 2     if(nums==null || nums.length==0) return 0;
 3     int dis=0;
 4     int edge=0;
 5     int steps=0;
 6     for(int i=0; i){
 7         dis=Math.max(dis, i+nums[i]);
 8         if(dis>=nums.length-1) return steps+1;
 9         // 判断是否在一次跳转之内,只有等于最大边界时才会步数加1
10         if(edge == i){
11             edge = dis;
12             steps++;
13         }
14     }
15     return 0;
16 }

 

18、Rotate Image:顺时针旋转n*n矩阵。先转置,再左右翻转。
 
 1 public void rotate(int[][] matrix) {
 2     if(matrix==null || matrix.length==0) return;
 3     int n = matrix.length;
 4     int tmp;
 5     for (int i = 0; i < n; ++i) {
 6         for (int j = i; j < n; ++j) {
 7             tmp = matrix[i][j];
 8             matrix[i][j] = matrix[j][i];
 9             matrix[j][i] = tmp;
10         }
11     }
12     for(int i=0; i){
13         reverse(matrix[i]);
14     }
15 }

 

19、Maximum Subarray:求数组的最大子串和。
 
 1 public int maxSubArray(int[] nums) {
 2     if(nums==null || nums.length==0) return 0;
 3     int max=nums[0];
 4     int curSum=0;
 5     for(int i=0; i){
 6         curSum=Math.max(nums[i], curSum+nums[i]);
 7         max=Math.max(max, curSum);
 8     }
 9     return max;
10 }

 

20、Spiral Matrix:螺旋输出矩阵的元素
 
 1 public List spiralOrder(int[][] matrix) {
 2     List res = new ArrayList<>();
 3     int m = matrix.length;
 4     if (m < 1) return res;
 5     int n = matrix[0].length;
 6     int left = 0;
 7     int right = n-1;
 8     int up = 0;
 9     int down = m-1;
10     while (left <= right && up <= down) {
11         // traverse right
12         for (int i = left; i <= right; i++) {
13             res.add(matrix[up][i]);
14         }
15         up++;
16         // traverse down
17         for (int i = up; i <= down; i++) {
18             res.add(matrix[i][right]);
19         }
20         right--;
21         // traverse left
22         if (up <= down) {
23             for (int i = right; i >= left; i--) {
24                 res.add(matrix[down][i]);
25             }
26         }
27         down--;
28         // traverse up
29         if (left <= right) {
30             for (int i = down; i >= up; i--) {
31                 res.add(matrix[i][left]);
32             }
33         }
34         left++;
35     }
36 
37     return res;
38 }

 

21、Jump Game:给定一个数组,判断能否从数组头到达数组尾。贪心法。维护一个变量,记录当前位置能到达的最远的距离,当最远距离超出数组长度,即可判断能到达数组尾。
 
1 public boolean canJump(int[] nums) {
2     if(nums==null || nums.length==0) return false;
3     int dis=0;
4     for(int i=0; i){
5         dis = Math.max(dis, i+nums[i]);
6         if(dis >= nums.length-1) return true;
7     }
8     return false;
9 }

 

22、Merge Intervals:合并区间。先按照区间的前端进行排序操作,再查看是否出现覆盖的情况。
 
 1 public List merge(List intervals) {
 2     List res = new ArrayList<>();
 3     int n = intervals.size();
 4     if (n < 1) return res;
 5     // Sort by ascending starting point using an anonymous Comparator
 6     Collections.sort(intervals, new Comparator() {
 7         @Override
 8         public int compare(Interval i1, Interval i2) {
 9             return Integer.compare(i1.start, i2.start);
10         }
11     });
12     int start = intervals.get(0).start;
13     int end = intervals.get(0).end;
14     for(int i=1; i){
15         Interval curInteval = intervals.get(i);
16         if(curInteval.start <= end){
17             end = Math.max(end, curInteval.end);
18         }
19         else{
20             res.add(new Interval(start, end));
21             start = curInteval.start;
22             end = curInteval.end;
23         }
24     }
25 }

 

23、Insert Interval:给定一个按前端排好序的区间数组,现有另外一个区间,求插入并合并后的区间。
 
 1 public List insert(List intervals, Interval newInterval) {
 2     int i=0;
 3     while(i < intervals.size() && intervals.get(i).end < newInterval.start) i++;          // 是否可以用二分找到这个i?
 4     while(i newInterval.end){
 5         newInterval = new Interval(Math.min(intervals.get(i).start, newInterval.start), Math.max(intervals.get(i).end, newInterval.end));
 6         intervals.remove(i);
 7     }
 8     intervals.add(i,newInterval);
 9     return intervals;
10 }

 

24、Spiral Matrix II:生成螺旋的矩阵
 
 1 public int[][] generateMatrix(int n) {
 2     int[][] matrix = new int[n][n];
 3     if (n < 1)
 4         return matrix;
 5     int count = 1;
 6     int left = 0;
 7     int right = n-1;
 8     int up = 0;
 9     int down = n-1;
10     while (left <= right && up <= down) {
11         for (int i = left; i <= right; i++) {
12             matrix[up][i] = count;
13             count++;
14         }
15         up++;
16         for (int i = up; i <= down; i++) {
17             matrix[i][right] = count;
18             count++;
19         }
20         right--;
21         if (up <= down) {
22             for (int i = right; i >= left; i--) {
23                 matrix[down][i] = count;
24                 count++;
25             }
26             down--;
27         }
28         if (left <= right) {
29             for (int i = down; i >= up; i--) {
30                 matrix[i][left] = count;
31                 count++;
32             }
33             left++;
34         }
35     }
36     return matrix;
37 }

 

25、Unique Paths:求从左上到右下的路径数。
 
public int uniquePaths(int m, int n) {
    int[] paths = new int[n+1];
    Arrays.fill(paths, 1);
    paths[0] = 0;
    for(int i=0; i){
        for(int j=0; j){
            paths[j+1] = paths[j+1] + paths[j];
        }
    }
    return paths[n];
}

 

26、Unique Paths II:存在障碍的情况下,求从左上到右下的路径数。
 
 1 public int uniquePathsWithObstacles(int[][] obstacleGrid) {
 2     int n = obstacleGrid.length;
 3     int m = obstacleGrid[0].length;
 4     int[][] p = new int[n][m];
 5     // 初始化第一行
 6     for (int i = 0; i < m; i++){
 7         p[0][i] = 1 - obstacleGrid[0][i];
 8         if (p[0][i] == 0)   break;
 9     }
10     // 初始化第一列
11     for (int j = 0; j < n; j++){
12         p[j][0] = 1 - obstacleGrid[j][0];
13         if (p[j][0] == 0) break;
14     }
15     for ( int i = 1; i < n; i++){
16         for (int j = 1; j < m; j++) {
17             if(obstacleGrid[i][j] == 1)
18                 p[i][j] = 0;
19             else p[i][j] = p[i-1][j] + p[i][j-1];
20         }
21     }
22     return p[n-1][m-1];
23 }

 

27、Minimum Path Sum:求从左上到右下的最小的路径的长度,只能向右或向下走。
 
 1 public int minPathSum(int[][] grid) {
 2     if(grid==null || grid.length==0) return 0;
 3     int m = grid.length;
 4     int n = grid[0].length;
 5     int[][] p = new int[m][n];
 6     for (int i = 0; i < m; i++) {
 7         for (int j = 0; j < n; j++) {
 8             if (i == 0 && j == 0)
 9                 p[i][j] = grid[i][j];
10             else if (i == 0 && j > 0)
11                 p[i][j] = p[i][j-1] + grid[i][j];
12             else if (i > 0 && j == 0)
13                 p[i][j] = p[i-1][j] + grid[i][j];
14             else
15                 p[i][j] = Math.min(p[i-1][j], p[i][j-1]) + grid[i][j];
16         }
17     }
18     return p[m-1][n-1];
19 }

 

28、Plus One:数组加1
 
public int[] plusOne(int[] digits) {
    int carry = 1;
    for(int i=digits.length-1; i>=0; i--){
        carry += digits[i];
        digits[i] = carry % 10;
        carry /= 10;
    }
    if(carry==0) return digits;
    else{
        int[] newdigits = new int[digits.length+1];
        newdigits[0]=1;
        for(int i=1; i){
            newdigits[i]=digits[i-1];
        }
        return newdigits;
    }
}

 

29、Set Matrix Zeroes:当(i,j)=0是,把第i行和第j列置为0
 
 1 public void setZeroes(int[][] matrix) {
 2     boolean col0 = false;
 3     for (int i = 0; i < matrix.length; i++) {
 4         if(matrix[i][0]==0) col0=true;
 5         for (int j = 1; j < matrix[0].length; j++) {
 6             if (matrix[i][j] == 0) {
 7                 matrix[0][j] = 0;
 8                 matrix[i][0] = 0;
 9             }
10         }
11     }
12     for (int i = matrix.length-1; i>=0; i--) {
13         for (int j = matrix[0].length-1; j>=1; j--) {
14             if (matrix[0][j] == 0 || matrix[i][0] == 0) {
15                 matrix[i][j] = 0;
16             }
17         }
18         if(col0) matrix[i][0]=0;
19     }
20 }

 

30、Search a 2D Matrix:在矩阵里查找数。二分查找
 
 1 public boolean searchMatrix(int[][] matrix, int target) {
 2     if(matrix==null || matrix[0].length==0) return false;
 3     int m=matrix.length;
 4     int n=matrix[0].length;
 5     int lo=0;
 6     int hi=m*n-1;
 7     int mid;
 8     while(lo<=hi){
 9         mid=(hi-lo)/2+lo;
10         int row=mid/n;
11         int col=mid%n;
12         if(matrix[row][col]==target) return true;
13         else if(matrix[row][col] > target) hi = mid-1;
14         else lo = mid + 1;
15     }
16     return false;
17 }

 

31、Sort Colors:给定一个数组,元素只有0,1,2,给它排序。可以用计数排序,也可以用交换。
 
 1 public void sortColors(int[] nums) {
 2     if(nums==null || nums.length==0) return;
 3     int lo=0;
 4     int hi=nums.length-1;
 5     int i=0;
 6     while(i<=hi){
 7         if(nums[i]==0) swap(nums, i++, lo++);
 8         else if(nums[i]==2) swap(nums, i, hi--);
 9         else{i++;}
10     }
11 }

 

32、Subsets:求一个集合的所有子集
 
 1 public List> subsets(int[] nums) {
 2     List> res = new ArrayList<>();
 3     List list = new ArrayList<>();
 4     res.add(list);
 5     for(int i=0; i){
 6         int size = res.size();
 7         for(int k=0; k){
 8             List newList = new ArrayList<>(res.get(k));
 9             newList.add(nums[i]);
10             res.add(newList);
11         }
12     }
13     return res;
14 }

 

 1 public List> subsets(int[] nums) {
 2     Arrays.sort(nums);
 3     List> res = new ArrayList<>();
 4     int totalNumber = 1 << nums.length;
 5     for(int i=0; i){
 6         List set = new ArrayList<>();
 7         for(int j=0; j){
 8             if(((i>>>j) & 0x1) == 1) set.add(nums[j]);
 9         }
10         res.add(set);
11     }
12     return res;
13 }

 

33、Word Search: 在二维字符数组中,查找单词,回溯法
 
 1 public boolean exist(char[][] board, String word) {
 2     for(int i = 0; i < board.length; i++)
 3         for(int j = 0; j < board[0].length; j++){
 4             if(exist(board, i, j, word, 0)) return true;
 5         }
 6     return false;
 7 }
 8 private boolean exist(char[][] board, int i, int j, String word, int ind){
 9     if(ind == word.length()) return true;
10     if(i > board.length-1 || i <0 || j<0 || j >board[0].length-1 || board[i][j]!=word.charAt(ind)) return false;
11     char ch=board[i][j];
12     board[i][j]='*';
13     boolean result =    exist(board, i-1, j, word, ind+1) ||
14                         exist(board, i, j-1, word, ind+1) ||
15                         exist(board, i, j+1, word, ind+1) ||
16                         exist(board, i+1, j, word, ind+1);
17     board[i][j] = ch;
18     return result;
19 }

 

34、Remove Duplicates from Sorted Array II: 数组已排序,去除数组中重复的元素,允许出现两次
 
 1 public int removeDuplicates(int[] nums) {
 2     if(nums.length <= 2) return nums.length;
 3     int index=0;
 4     int p=1;
 5     int counter=1;
 6     while(p<nums.length){
 7         if(nums[p] == nums[index]){
 8             if(counter == 2){
 9                 p++;
10             }
11             else{
12                 nums[++index] = nums[p];
13                 p++;
14                 counter = 2;
15             }
16         }
17         else {
18             nums[++index] = nums[p];
19             p++;
20             counter = 1;
21         }
22     }
23     return index+1;
24 }

 

35、Search in Rotated Sorted Array II: 在循环有序数组中查找,数组中有重复的数
 1 public class Solution {
 2     public boolean search(int[] nums, int target) {
 3         if (nums.length < 1)
 4             return false;
 5         int start = 0;
 6         int end = nums.length - 1;
 7         while (start < end) {
 8             int mid = start + (end-start)/2;
 9             if (nums[mid] == target) return true;
10 
11             if (nums[start] < nums[mid]) {
12                 if (target < nums[mid] && target >= nums[start])
13                     end = mid - 1;
14                 else start = mid + 1;
15             }
16             else if (nums[start] > nums[mid]){
17                 if (target > nums[mid] && target <= nums[end])
18                     start = mid + 1;
19                 else end = mid - 1;
20             }
21             else {
22                 start++;
23             }
24         }
25         return target == nums[start];
26     }
27 }
 
36、Largest Rectangle in Histogram: 求最大的长方形面积
 
 1 public int largestRectangleArea(int[] heights) {
 2     int maxArea = 0;
 3     Stack stack = new Stack<>();
 4     int i=0;
 5     int height = 0;
 6     int area = 0;
 7     while(i <= heights.length){
 8         if(i < heights.length) height = heights[i];
 9         else height = 0;
10         if(stack.isEmpty() || height >= heights[stack.peek()]){
11             stack.push(i++);
12         }
13         else{
14             int index = stack.pop();
15             if(stack.isEmpty()) area = i * heights[index];
16             else {
17                 area = (i-stack.peek()-1) * heights[index];
18             }
19             maxArea = Math.max(area, maxArea);
20         }
21     }
22     return maxArea;
23 }

 

37、Maximal Rectangle: 利用36题结论
 
 1 public int maximalRectangle(char[][] matrix) {
 2     int m = matrix.length;
 3     if (m < 1){
 4         return 0;
 5     }
 6     int n = matrix[0].length;
 7     int[][] heights = new int[m][n+1];
 8     for(int i = 0; i < m; i++){
 9         for(int j = 0; j < n; j++) {
10             if(matrix[i][j] == '0'){
11                 heights[i][j] = 0;
12             }else {
13                 heights[i][j] = i == 0 ? 1 : heights[i - 1][j] + 1;
14             }
15         }
16     }
17     int maxArea=0;
18     for(int i = 0; i < m; i++){
19         int area = maxAreaInHist(heights[i]);
20         if(area > maxArea){
21             maxArea=area;
22         }
23     }
24     return maxArea;
25 }

 

38、Merge Sorted Array: 类似于插入排序
 
39、Subsets II: 数组子集,数组中有重复的元素
 
 1 public List> subsetsWithDup(int[] nums) {
 2     int length = nums.length;
 3     Arrays.sort(nums);
 4 
 5     List> res = new ArrayList<>();
 6     List emptyList = new ArrayList<>();
 7     res.add(emptyList);
 8 
 9     for (int i = 0; i < length; i++) {
10         int count = 1;
11         while (i+1< length && nums[i] == nums[i+1]) {
12             count++;
13             i++;
14         }
15         int size = res.size();
16         for (int j = 0; j < size; j++) {
17             for (int k = 0; k < count; k++) {
18                 List newList = new ArrayList<>(res.get(j));
19                 for (int p = 0; p <= k; p++)
20                     newList.add(nums[i]);
21                 res.add(newList);
22             }
23         }
24     }
25     return res;
26 }

 

40、Construct Binary Tree from Preorder and Inorder Traversal: 根据先序和中序遍历构建树
 
构建过程,在中序遍历中找根节点的下标可以用hashmap加速

 

41、Construct Binary Tree from Inorder and Postorder Traversal: 根据中序和后序遍历构建树
 
构建过程,在中序遍历中找根节点的下标可以用hashmap加速

 

42、Pascal's Triangle: 生成杨辉三角
 
 1 public List> generate(int numRows) {
 2     List> res = new ArrayList<>();
 3 
 4     if (numRows < 1) return res;
 5     List first = new ArrayList<>();
 6     first.add(1);
 7     res.add(first);
 8     for (int i = 2; i <= numRows; i++)
 9     {
10         List list = new ArrayList<>();
11         List preList = res.get(i-2);
12         for (int j = 0; j < i; j++)
13         {
14             if (j == 0)
15                 list.add(1);
16             else if (j == i-1)
17                 list.add(1);
18             else
19             {
20                 list.add(preList.get(j-1)+preList.get(j));
21             }
22         }
23         res.add(list);
24     }
25     return res;
26 }

 

43、Pascal's Triangle II: 生成第k个杨辉三角
 1 public List getRow(int rowIndex) {
 2     List res = new ArrayList<>();
 3     if (rowIndex < 0)
 4         return res;
 5 
 6     for (int i = 0; i <= rowIndex; i++)
 7     {
 8         res.add(0, 1);
 9         for (int j = 1; j < res.size()-1; j++)
10         {
11             res.set(j, res.get(j)+res.get(j+1));
12         }
13     }
14     return res;
15 }
 
44、Triangle: 求最短路径
 
 1 public int minimumTotal(List> triangle) {
 2     if (triangle == null || triangle.size() == 0)
 3         return 0;
 4 
 5     int [] sum = new int[triangle.size()];
 6     for (int i = 0; i < triangle.size(); i++)
 7         sum[i] = triangle.get(triangle.size()-1).get(i);
 8 
 9     for (int i = triangle.size()-2; i >= 0; i--)
10     {
11         for (int j = 0; j <= i; j++)
12             sum[j] = Math.min(sum[j], sum[j+1]) + triangle.get(i).get(j);
13     }
14     return sum[0];
15 
16 }

 

45、Best Time to Buy and Sell Stock:
 
46、Best Time to Buy and Sell Stock II:
 
47、Best Time to Buy and Sell Stock III:
 
48、Word Ladder II:
 
49、Longest Consecutive Sequence:
 
50、Maximum Product Subarray:
 
51、Find Minimum in Rotated Sorted Array:
 
52、Find Minimum in Rotated Sorted Array II:
 
53、Find Peak Element:
 
54、Missing Ranges:
 
55、Two Sum II - Input array is sorted:
 
56、Majority Element:
 
57、Rotate Array:
 
58、Minimum Size Subarray Sum:
 
59、Combination Sum III:给定数k和n,求所有的k个数之和等于n的集合,其中k个数中不允许重复的数,并且数字大小为1到9。回溯法
 
 1 public List> combinationSum3(int k, int n)
 2 {
 3     List> result = new ArrayList<>();
 4     List temp = new ArrayList<>();
 5     boolean[] visited = new boolean[10];
 6     helper(k, n, 1, 0, visited, temp, result);
 7     return result;
 8 }
 9 public void helper(int k, int n, int start, int sum, boolean[] visited, List temp, List> res)
10 {
11     if (sum == n && temp.size() == k){
12         res.add(new ArrayList<>(temp));
13         return;
14     }
15     if (sum > n || temp.size() > k) return;
16     for (int i = start; i < 10; i++){
17         if (visited[i])
18             continue;
19         if (temp.size() > 0 && temp.get(temp.size()-1) > i)
20             continue;
21         temp.add(i);
22         visited[i] = true;
23         helper(k, n, start+1, sum+i, visited, temp, res);
24         temp.remove(temp.size()-1);
25         visited[i] = false;
26     }
27 }

 

60、Contains Duplicate:
 
61、Contains Duplicate II:
 
62、Summary Ranges:
 
63、Majority Element II:
 
64、Product of Array Except Self:
 
65、Shortest Word Distance:
 
66、Shortest Word Distance III:
 
67、3Sum Smaller:
 
68、Missing Number:
 
69、Find the Celebrity:
 
70、Wiggle Sort:
 
71、Move Zeroes:
 
72、Find the Duplicate Number:
 
73、Game of Life:
 
74、Range Addition:
 
75、Patching Array:给出一个从小到大排好序的整数数组nums和一个整数n,在数组中添加若干个补丁(元素)使得[1,n]的区间内的所有数都可以表示成nums中若干个数的和。返回最少需要添加的补丁个数。
 1 public class Solution {
 2     /**
 3     定义一个当前数字i之前的数组合能到达的最小上界minUpper,如表示的数范围是1-m,则定义上界为minUpper=m+1
 4     循环如下:
 5     上界minUpper <= N:
 6         如果当前数字i <= minUpper:
 7             更新上界:minUpper = minUpper + i
 8         如果当前数字i > minUpper:说明需要添加补丁数字minUpper,并且更新此时的上界minUpper=minUpper+minUpper;
 9     */
10     public int minPatches(int[] nums, int n) {
11         int minUpper = 1;
12         int index = 0;
13         int missingCounter = 0;
14         while (minUpper <= n) {
15             if(index < nums.length && nums[index] <= minUpper) {
16                 minUpper += nums[index];
17                 index++;
18             }
19             else {
20                 //System.out.println(minUpper);
21                 minUpper += minUpper;
22                 missingCounter ++;
23             }
24         }
25         return missingCounter;
26     }
27 }

 

转载于:https://www.cnblogs.com/shizhh/p/5717425.html

你可能感兴趣的:(【持续更新】leetcode算法-数组篇)