LeetCode #4 Longest Palindromic Substring

Question

Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.

即求最长回文子串(注意和最长回文子序列的区别,子串是连续的子序列可以是非连续的)

Example 1:

Input: "babad"
Output: "bab"
Note: "aba" is also a valid answer.

Example 2:

Input: "cbbd"
Output: "bb"

方法一:暴力枚举

枚举所有的子串,共O(n^2)次,再对每一个子串检查是否是回文的,花费时间O(n),所以一共O(n^3)

方法二:动态规划

先确定状态:状态f(i, j) 表示从i到j的子串是否是回文的,是值为1,不是值为0

容易写出状态转移方程:

  当 s[i] == s[j] 时,f(i, j) = f(i+1, j-1) 

  当 s[i] == s[j] 且 i+1 == j 时,f(i, j) = 1

  当 i == j 时,f(i, j) = 1

class Solution:
    
    def longestPalindrome(self, s: str) -> str:
        len_s = len(s)
        longest_start = 0
        longest_end = 0
        longest_length = 1
        dp = [[0 for i in s] for j in s]
        for j in range(len_s):
            for i in range(j+1):
                if s[i] == s[j] and (j-i <= 1 or dp[i+1][j-1]) :
                    dp[i][j] = 1
                if dp[i][j] == 1 and j-i+1 > longest_length:
                    longest_start = i
                    longest_end = j
                    longest_length = j - i + 1
        return s[longest_start:longest_end+1]
    

时间复杂度为O(n^2)

此方法枚举时从左往右枚举;也可以从一个回文子串的中间向两边枚举,不用动归

方法三:Manacher算法

 

 

(未完待续)

转载于:https://www.cnblogs.com/sbj123456789/p/11561310.html

你可能感兴趣的:(LeetCode #4 Longest Palindromic Substring)