高性能mysql笔记(一)——架构与历史

逻辑架构

高性能mysql笔记(一)——架构与历史_第1张图片
Mysql服务器逻辑架构图

最上层的服务并非Mysql独有,大多数基于网络的C/S的工具或者服务都有类似架构。比如链接处理,授权认证、安全等等。

大多数Mysql的核心服务都在第二层,包括查询解析、分析、优化、换成以及所有的内置函数,所有跨存储引擎的功能都在这一层实现:存储过程、触发器、试图等。

第三层存储负责MySQL中数据的存储和提取。服务器通过API与存储引擎进行通信。存储引擎API包含几十个底层函数,用于执行诸如“开始一个事务”或者“根据主键提取一行记录”等操作。但存储引擎不会去解析SQL。

连接管理与安全性

每个客户端连接都会在服务器进程中拥有一个线程,这个连接的查询只会在这个单独的线程中执行,该线程只能轮流在某个CPU核心或者CPU中运行。服务器会负责缓存线程,因此不需要为每一个新建的连接创建或者销毁线程

优化与执行

MySQL会解析查询,并创建内部数据结构(解析树),然后对其进行各种优化,包括重写查询、决定表的读取顺序,以及选择合适的索引等。用户可以通过特殊的关键字提示(hint)优化器,影响它的决策过程。也可以请求优化器解释(explain)优化过程的各个因素。

优化器并不关心表使用的是什么存储引擎,但存储引擎对于优化查询是有影响的。优化器会请求存储引擎提供容量或某个具体操作的开销信息,以及表数据的统计信息等。

对于SELECT语句,在解析查询之前,服务器会先检查查询缓存(Query Cache),如果能够在其中找到对应的查询,服务器就不必再执行查询解析、优化和执行的整个过程,而是直接返回查询缓存中的结果集。

并发控制

读写锁

在处理并发读或者写时,可以通过实现一个由两种类型的锁组成的锁系统来解决问题。这两种类型的锁通常被称为共享锁(shared lock)和排他锁(exclusive lock),也叫读锁(read lock)和写锁(write lock)。

读锁是共享的,或者说是相互不阻塞的。多个客户在同一时刻可以同时读取同一个资源,而互不干扰。写锁则是排他的,也就是说一个写锁会阻塞其他的写锁和读锁,这是出于安全策略的考虑,只有这样,才能确保在给定的时间里,只有一个用户能执行写入,并防止其他用户读取正在写入的同一资源。

锁粒度

加锁也需要消耗资源。锁的各种操作,包括获得锁、检查锁是否已经解除、释放锁等,都会增加系统的开销。所谓的锁策略,就是在锁的开销和数据的安全性之间寻求平衡,这种平衡当然也会影响到性能。

表锁是MySQL中最基本的锁策略,并且是开销最小的策略。表锁非常类似于前文描述的邮箱加锁机制:它会锁定整张表。一个用户在对表进行写操作(插入、删除、更新等)前,需要先获得写锁,这会阻塞其他用户对该表的所有读写操作。只有没有写锁时,其他读取的用户才能获得读锁,读锁之间是不相互阻塞的。

行级锁可以最大程度地支持并发处理(同时也带来了最大的锁开销)。众所周知,在InnoDB和XtraDB,以及其他一些存储引擎中实现了行级锁。行级锁只在存储引擎层实现,而MySQL服务器层没有实现。服务器层完全不了解存储引擎中的锁实现。在本章的后续内容以及全书中,所有的存储引擎都以自己的方式显现了锁机制。

事务

事务内的语句,要么全部执行成功,要么全部执行失败。

ACID表示原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)。一个运行良好的事务处理系统,必须具备这些标准特征。

原子性(atomicity)

一个事务必须被视为一个不可分割的最小工作单元,整个事务中的所有操作要么全部提交成功,要么全部失败回滚,对于一个事务来说,不可能只执行其中的一部分操作,这就是事务的原子性。

一致性(consistency)

数据库总是从一个一致性的状态转换到另外一个一致性的状态。在前面的例子中,一致性确保了,即使在执行第三、四条语句之间时系统崩溃,支票账户中也不会损失200美元,因为事务最终没有提交,所以事务中所做的修改也不会保存到数据库中。

隔离性(isolation)

通常来说,一个事务所做的修改在最终提交以前,对其他事务是不可见的。在前面的例子中,当执行完第三条语句、第四条语句还未开始时,此时有另外一个账户汇总程序开始运行,则其看到的支票账户的余额并没有被减去200美元。后面我们讨论隔离级别(Isolation level)的时候,会发现为什么我们要说“通常来说”是不可见的。

持久性(durability)

一旦事务提交,则其所做的修改就会永久保存到数据库中。此时即使系统崩溃,修改的数据也不会丢失。持久性是个有点模糊的概念,因为实际上持久性也分很多不同的级别。有些持久性策略能够提供非常强的安全保障,而有些则未必。而且不可能有能做到100%的持久性保证的策略(如果数据库本身就能做到真正的持久性,那么备份又怎么能增加持久性呢?)。在后面的一些章节中,我们会继续讨论MySQL中持久性的真正含义。

隔离级别

READ UNCOMMITTED(未提交读)

在READ UNCOMMITTED级别,事务中的修改,即使没有提交,对其他事务也都是可见的。事务可以读取未提交的数据,这也被称为脏读(Dirty Read)。这个级别会导致很多问题,从性能上来说,READ UNCOMMITTED不会比其他的级别好太多,但却缺乏其他级别的很多好处,除非真的有非常必要的理由,在实际应用中一般很少使用。

READ COMMITTED(提交读)

多数数据库系统的默认隔离级别都是READ COMMITTED(但MySQL不是)。READ COMMITTED满足前面提到的隔离性的简单定义:一个事务开始时,只能“看见”已经提交的事务所做的修改。换句话说,一个事务从开始直到提交之前,所做的任何修改对其他事务都是不可见的。这个级别有时候也叫做不可重复读(nonrepeatable read),因为两次执行同样的查询,可能会得到不一样的结果。

REPEATABLE READ(可重复读)

REPEATABLE READ解决了脏读的问题。该级别保证了在同一个事务中多次读取同样记录的结果是一致的。但是理论上,可重复读隔离级别还是无法解决另外一个幻读(Phantom Read)的问题。所谓幻读,指的是当某个事务在读取某个范围内的记录时,另外一个事务又在该范围内插入了新的记录,当之前的事务再次读取该范围的记录时,会产生幻行(Phantom Row)。InnoDB和XtraDB存储引擎通过多版本并发控制(MVCC,Multiversion Concurrency Control)解决了幻读的问题。本章稍后会做进一步的讨论。

可重复读是MySQL的默认事务隔离级别

SERIALIZABLE(可串行化)

SERIALIZABLE是最高的隔离级别。它通过强制事务串行执行,避免了前面说的幻读的问题。简单来说,SERIALIZABLE会在读取的每一行数据上都加锁,所以可能导致大量的超时和锁争用的问题。实际应用中也很少用到这个隔离级别,只有在非常需要确保数据的一致性而且可以接受没有并发的情况下,才考虑采用该级别。

高性能mysql笔记(一)——架构与历史_第2张图片

死锁

数据库系统实现了各种死锁检测和死锁超时机制。越复杂的系统,比如InnoDB存储引擎,越能检测到死锁的循环依赖,并立即返回一个错误。这种解决方式很有效,否则死锁会导致出现非常慢的查询。还有一种解决方式,就是当查询的时间达到锁等待超时的设定后放弃锁请求,这种方式通常来说不太好。InnoDB目前处理死锁的方法是,将持有最少行级排他锁的事务进行回滚(这是相对比较简单的死锁回滚算法)。

死锁发生以后,只有部分或者完全回滚其中一个事务,才能打破死锁。

事务日志

事务日志可以帮助提高事务的效率。使用事务日志,存储引擎在修改表的数据时只需要修改其内存拷贝,再把该修改行为记录到持久在硬盘上的事务日志中,而不用每次都将修改的数据本身持久到磁盘。事务日志采用的是追加的方式,因此写日志的操作是磁盘上一小块区域内的顺序I/O,而不像随机I/O需要在磁盘的多个地方移动磁头,所以采用事务日志的方式相对来说要快得多。事务日志持久以后,内存中被修改的数据在后台可以慢慢地刷回到磁盘。目前大多数存储引擎都是这样实现的,我们通常称之为预写式日志(Write-Ahead Logging),修改数据需要写两次磁盘。

隐式和显式锁定

前面描述的锁定都是隐式锁定,InnoDB会根据隔离级别在需要的时候自动加锁。

另外,InnoDB也支持通过特定的语句进行显式锁定,这些语句不属于SQL规范:

SELECT ... LOCK IN SHARE MODE

SELECT ... FOR UPDATE

MySQL也支持LOCK TABLES和UNLOCK TABLES语句,这是在服务器层实现的,和存储引擎无关。

多版本并发控制

可以认为MVCC是行级锁的一个变种,但是它在很多情况下避免了加锁操作,因此开销更低。

InnoDB的MVCC,是通过在每行记录后面保存两个隐藏的列来实现的。这两个列,一个保存了行的创建时间,一个保存行的过期时间(或删除时间)。当然存储的并不是实际的时间值,而是系统版本号(system version number)。每开始一个新的事务,系统版本号都会自动递增。事务开始时刻的系统版本号会作为事务的版本号,用来和查询到的每行记录的版本号进行比较。

REPEATABLE READ隔离级别下,MVCC具体是如何操作的:

SELECT

InnoDB会根据以下两个条件检查每行记录:

InnoDB只查找版本早于当前事务版本的数据行(也就是,行的系统版本号小于或等于事务的系统版本号),这样可以确保事务读取的行,要么是在事务开始前已经存在的,要么是事务自身插入或者修改过的。

行的删除版本要么未定义,要么大于当前事务版本号。这可以确保事务读取到的行,在事务开始之前未被删除。

只有符合上述两个条件的记录,才能返回作为查询结果。

INSERT

InnoDB为新插入的每一行保存当前系统版本号作为行版本号。

DELETE

InnoDB为删除的每一行保存当前系统版本号作为行删除标识。

UPDATE

InnoDB为插入一行新记录,保存当前系统版本号作为行版本号,同时保存当前系统版本号到原来的行作为行删除标识。

MVCC只在REPEATABLE READ和READ COMMITTED两个隔离级别下工作。

你可能感兴趣的:(高性能mysql笔记(一)——架构与历史)