在各种实际业务场景中,按照某个关键字对两份数据进行连接是非常常见的。如果两份数据都比较小,那么可以直接在内存中完成连接。如果是大数据量的呢?显然,在内存中进行连接会发生 OOM。MapReduce 可以用来解决大数据量的链接。
MapReduce 的Join操作主要分两类:
MapJoin
ReduceJoin
ReduceJoin:
1、 map 阶段,两份数据 data1 和 data2 会被 map 分别读入,解析成以链接字段为 key 以查询字段为 value 的 key-value 对,并标明数据来源是 data1 还是 data2。
2、 reduce 阶段,reducetask 会接收来自 data1 和 data2 的相同 key 的数据,在 reduce 端进行乘积链接,最直接的影响是很消耗内存,导致 OOM
MapJoin:
MapJoin 适用于有一份数据较小的连接情况。做法是直接把该小份数据直接全部加载到内存当中,按链接关键字建立索引。然后大份数据就作为 MapTask 的输入,对 map()方法的每次输入都去内存当中直接去匹配连接。然后把连接结果按 key 输出,这种方法要使用 hadoop中的 DistributedCache 把小份数据分布到各个计算节点,每个 maptask 执行任务的节点都需要加载该数据到内存,并且按连接关键字建立索引。
现有两份数据 movies.dat 和 ratings.dat 数据样式分别为: (https://pan.baidu.com/s/1vC-uq2sm0yFdqFZVOntlhA 提取码:dplw )
movies.dat
1::Toy Story (1995)::Animation|Children's|Comedy
2::Jumanji (1995)::Adventure|Children's|Fantasy
3::Grumpier Old Men (1995)::Comedy|Romance
4::Waiting to Exhale (1995)::Comedy|Drama
5::Father of the Bride Part II (1995)::Comedy
6::Heat (1995)::Action|Crime|Thriller
7::Sabrina (1995)::Comedy|Romance
8::Tom and Huck (1995)::Adventure|Children's
9::Sudden Death (1995)::Action
10::GoldenEye (1995)::Action|Adventure|Thriller
11::American President, The (1995)::Comedy|Drama|Romance
12::Dracula: Dead and Loving It (1995)::Comedy|Horror
13::Balto (1995)::Animation|Children's
14::Nixon (1995)::Drama
15::Cutthroat Island (1995)::Action|Adventure|Romance
16::Casino (1995)::Drama|Thriller
17::Sense and Sensibility (1995)::Drama|Romance
18::Four Rooms (1995)::Thriller
字段含义:movieid, moviename, movietype
ratings.dat
1::1193::5::978300760
1::661::3::978302109
1::914::3::978301968
1::3408::4::978300275
1::2355::5::978824291
1::1197::3::978302268
1::1287::5::978302039
1::2804::5::978300719
1::594::4::978302268
1::919::4::978301368
字段含义:userid, movieid, rate, timestamp
Select * from movie a join ratings b on a.movieid = b.movieid
现要求对两表进行连接,要求输出最终的结果有以上六个字段: movieid, userid, rate, moviename, movietype, timestamp
第一步:封装 MovieRate,方便数据的排序和序列化
package MapReduceJoin;
import org.apache.hadoop.io.WritableComparable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
public class MovieRate implements WritableComparable {
private String movieid;
private String useid;
private int rate;
private String movieName;
private String movieType;
private long ts;
public String getMovieid() {
return movieid;
}
public String getUseid() {
return useid;
}
public int getRate() {
return rate;
}
public String getMovieName() {
return movieName;
}
public String getMovieType() {
return movieType;
}
public void setMovieid(String movieid) {
this.movieid = movieid;
}
public void setUseid(String useid) {
this.useid = useid;
}
public void setRate(int rate) {
this.rate = rate;
}
public void setMovieName(String movieName) {
this.movieName = movieName;
}
public void setMovieType(String movieType) {
this.movieType = movieType;
}
public long getTs() {
return ts;
}
public void setTs(long ts) {
this.ts = ts;
}
public MovieRate(String movieid, String useid, int rate, String movieName, String movieType,long ts) {
this.movieid = movieid;
this.useid = useid;
this.rate = rate;
this.movieName = movieName;
this.movieType = movieType;
this.ts = ts;
}
@Override
public String toString() {
return movieid + "\t" + useid + "\t" + rate + "\t" + movieName
+ "\t" + movieType + "\t" + ts;
}
public void write(DataOutput out) throws IOException {
out.writeUTF(movieid);
out.writeUTF(useid);
out.writeInt(rate);
out.writeUTF(movieName);
out.writeUTF(movieType);
out.writeLong(ts);
}
public void readFields(DataInput in) throws IOException {
this.movieid = in.readUTF();
this.useid = in.readUTF();
this.rate = in.readInt();
this.movieName = in.readUTF();
this.movieType = in.readUTF();
this.ts = in.readLong();
}
public int compareTo(MovieRate o) {
int it = o.getMovieid().compareTo(this.movieid);
if(it == 0){
return o.getUseid().compareTo(this.useid) ;
}else{
return it;
}
}
}
第二步、定义Movie类
package MapReduceJoin;
public class Movie {
private String movieid;
private String movieName;
private String moiveType;
public String getMovieid() {
return movieid;
}
public String getMovieName() {
return movieName;
}
public String getMoiveType() {
return moiveType;
}
public void setMovieid(String movieid) {
this.movieid = movieid;
}
public void setMovieName(String movieName) {
this.movieName = movieName;
}
public void setMoiveType(String moiveType) {
this.moiveType = moiveType;
}
public Movie(String movieid, String movieName, String moiveType) {
this.movieid = movieid;
this.movieName = movieName;
this.moiveType = moiveType;
}
}
第三步、编写 MapReduce 程序
package MapReduceJoin;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.filecache.DistributedCache;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.HashMap;
import java.util.Map;
public class MovieRatingMapJoin {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
conf.set("fs.deafultFS","qyl01:9000");
System.setProperty("HADOOP_USER_NAME","hadoop");
Job job = Job.getInstance(conf);
job.setJar("/home/qyl/mrmr.jar");
job.setMapperClass(MovieRatingMapper.class);
job.setMapOutputKeyClass(MovieRate.class);
job.setMapOutputValueClass(NullWritable.class);
job.setNumReduceTasks(0); //因为不需要reduce来进行处理,所有设置为0
String minInput = args[0];
String maxInput = args[1];
String output = args[2];
FileInputFormat.setInputPaths(job, new Path(maxInput));
Path outputPath = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(outputPath)){
fs.delete(outputPath, true);
}
FileOutputFormat.setOutputPath(job, outputPath);
URI uri = new Path(minInput).toUri();
job.addCacheFile(uri);
boolean status = job.waitForCompletion(true);
System.exit(status?0:1);
}
static class MovieRatingMapper extends Mapper{
//用来存储小份数据的所有解析出来的key-value
private static Map movieMap = new HashMap();
@Override
protected void setup(Context context) throws IOException, InterruptedException {
Path[] localCacheFilePaths = DistributedCache.getLocalCacheFiles(context.getConfiguration()); //获取文件地址
String myfilePath = localCacheFilePaths[0].toString();
System.out.println(myfilePath);
URI[] cacheFiles =context.getCacheFiles();
System.out.println(cacheFiles.toString());
BufferedReader br = new BufferedReader(new FileReader(myfilePath.toString()));
//此处的Line就是从文件当中逐行读取到的movie
String line = "";
while(null !=(line =br.readLine())){
String[] split = line.split("::"); //切分一行数据
movieMap.put(split[0],new Movie(split[0],split[1],split[2]));
}
IOUtils.closeStream(br);
}
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] splits = value.toString().split("::");
String userid = splits[0];
String movieid = splits[1];
int rate = Integer.parseInt(splits[2]);
long ts = Long.parseLong(splits[3]);
String movieName = movieMap.get(movieid).getMovieName();
String movieType = movieMap.get(movieid).getMoiveType();
MovieRate mr = new MovieRate(movieid,userid,rate,movieName,movieType,ts);
context.write(mr,NullWritable.get());
}
}
}