【毫米波雷达】LFMCW测距/测速原理

一、脉冲雷达&连续波雷达

雷达按照发射信号种类分成脉冲雷达和连续波雷达两大类

常规脉冲雷达发射周期性的高频脉冲,连续波雷达发射的是连续波信号。

 

【毫米波雷达】LFMCW测距/测速原理_第1张图片

通常,脉冲雷达具有较高的峰值功率和较小的占空比,而连续波雷达则具有100%的占空比和较低的功率。如上图

连续波雷达发射的信号可以是单频连续波(CW)或者调频连续波(FMCW),调频方式也有多种,常见的有三角波、锯齿波、编码调制或者噪声调频等。其中,单频连续波雷达仅可用于测速,无法测距,而FMCW雷达既可测距又可测速,并且在近距离测量上的优势日益明显。

【毫米波雷达】LFMCW测距/测速原理_第2张图片

二、FMCW雷达框图

【毫米波雷达】LFMCW测距/测速原理_第3张图片

调频连续波雷达如要由收发器和带微处理器的控制单元组成,收发器如果使用单个天线进行同时发射和接收,FMCW雷达需要铁氧体环形器来分离发射和接收信号,对隔离度要求较高。当然,若使用收发分离的贴片天线,成本会相对低一点。高频信号由压控振荡器(VCO)产生,通过功率分配器将一部分经过额外放大后馈送至发射天线,另一部分耦合至混频器,与接收的回波混频、低通滤波,得到基带差频信号,经过模数转换后送至微处理器处理。

三、FMCW雷达的测距/测速原理

FMCW雷达在扫频周期内发射频率变化的连续波,被物体反射后的回波与发射信号有一定的频率差,通过测量频率差可以获得目标与雷达之间的距离信息。以三角波调频连续波为例来简单介绍雷达的测距/测速原理。如下图,红色为发射信号频率,绿色为接收信号频率,扫频周期为T,扫频带宽为B,发射信号经过目标发射,回波信号会有延时,在三角形的频率变化中,可以在上升沿和下降沿两者上进行距离测量。

【毫米波雷达】LFMCW测距/测速原理_第4张图片

如果没有多普勒频率,上升沿期间的频率差值等于下降沿期间的测量值。对于运动目标,则上升/下降沿期间的频率差不同,我们可以通过这二个频率差来测距和测速。求距离个速度的公式如下(1)(2)所示。

【毫米波雷达】LFMCW测距/测速原理_第5张图片

由(1)(2)可知

【毫米波雷达】LFMCW测距/测速原理_第6张图片

差拍信号经低通滤波和放大后送数字信号处理器,完成对差拍信号的FFT、检测,对目标数据进行计算后送显控终端显示。

三角波调频连续波雷达正是通过采用正负调频斜率来消除距离与速度的耦合,进而进行目标速度的估计。

但是,往往为了获得目标的速度信息,雷达通常以帧为单位,均匀等时间间隔地发出一串chirps信号。然后利用信号相位差来测量出目标的速度。对与每个chirp对应的数字化采样点执行距离FFT,输出结果以连续行的形式存储在矩阵中。处理器接收并处理一帧中所有单个chirp后,开始对chirps串序列进行FFT(多普勒FFT)。

【毫米波雷达】LFMCW测距/测速原理_第7张图片

距离FFT(逐行)和多普勒FFT(逐列)的联合操作可视作每帧对应数字化采样点的二维FFT。二维FFT可同时分辨出目标的距离和速度。也就是说,二维FFT的峰值位置对应雷达前方目标的距离和速度。

对目标角度信息的解析需要多个RX天线。因此,处理器首先处理每个天线接收到的信号进行二维FFT。随后,对多个天线所得的二维FFT矩阵进行联合处理,最后得出目标的到达角

【毫米波雷达】LFMCW测距/测速原理_第8张图片

通过以上处理,雷达可以解析出目标的距离、速度和角度等多维信息。雷达的性能指标取决于发射信号的选择。例如,随着chirp信号带宽的增加,距离分辨率随之提高;速度分辨率随着帧持续时间的增加而提高。

同样地,最大可测速度与相邻chirp信号之间的空间间隔成反比;TX/RX天线的数量对角度分辨率有着决定性的作用。FMCW雷达的有效噪声带宽与其调频时间成反比,调频时间越长,有效噪声带宽越低,分辨率越高。

连续波调频(FMCW)雷达已广泛应用于汽车领域,包括从安全到舒适性能的各个方面,例如盲点检测、换道辅助、自动巡航控制和停车辅助等。无论天气和周围的光照条件如何,雷达都能够可靠、准确地探测和定位障碍物。

上述材料来自雷达通信电子战的文章整理

 

 

 

你可能感兴趣的:(毫米波雷达)