- 4D雷达再上热搜!华为/小米上车
高工智能汽车
自动驾驶人工智能汽车
智驾能力边界的不断抬升,对于传感器的要求仍在增加。去年至今,不管是端到端,还是大模型,本质上并没有解决摄像头(视觉感知)的物理性能缺陷;激光雷达处于成本下降区间,安全冗余作用明显,但对于恶劣天气、穿透能力以及抗干扰性仍存在劣势。而毫米波雷达“全天候全天时”工作的能力恰恰是最好的补充;同时,随着4D成像雷达技术的成熟,也解决了过去一直存在的目标识别精度有限、分辨率低以及高程探测能力有限等问题。尤其是
- 智驾技术全链条解析
TrustZone_
智驾智驾
智驾技术全链条解析(2025年最新版)智驾技术涵盖从环境感知到车辆控制的完整闭环,涉及硬件、算法、数据与系统集成等多个领域。以下结合行业最新进展(截至2025年3月)进行深度拆解:一、感知技术:汽车的“感官系统”多传感器融合架构•核心传感器类型:◦激光雷达:华为ADS3.0采用200米探测距离的激光雷达,实现高精度三维建模,但成本较高(约2500元/颗);◦毫米波雷达:用于穿透雨雾探测,比亚迪天神
- AUTOSAR从入门到精通-4D毫米雷达波
格图素书
人工智能
目录前言几个高频面试题目4D毫米波雷达会取代激光雷达吗?3D与4D毫米波雷达对比毫米波雷达行业发展历程算法原理几个相关概念雷达毫米波雷达长波vs短波与传统毫米波雷达和激光雷达对比与传统毫米波雷达对比与激光雷达对比与摄像头对比毫米波雷达工作原理毫米波雷达主要应用波段毫米波构成主要功能以及实现方式什么是4D毫米波?4D毫米波雷达市场规模4D毫米波雷达厂商4D毫米波雷达探测性能4D毫米波雷达算法能力现状
- 华为 ADS 3.0 与特斯拉 FSD V12:自动驾驶技术的巅峰对决与未来展望
中科宁图
华为自动驾驶人工智能
一、华为ADS3.0:多传感器融合的卓越代表(一)硬件与技术特色华为ADS3.0智能驾驶系统构建了全面的全息感知体系,融合激光雷达、高清摄像头、毫米波雷达、超声波传感器等多种设备。激光雷达实现环境三维重建和精确测距,在恶劣条件下仍能准确捕捉物体信息;高分辨率摄像头获取视觉信息;毫米波雷达在极端天气下强化对移动物体探测;超声波传感器辅助近距离障碍物检测。GOD网络融合处理多传感器数据,为决策提供坚实
- 自动驾驶感知系统配置分析——以“8摄像头+1毫米波雷达+12超声波雷达”为例
空间机器人
自动驾驶人工智能机器学习
自动驾驶感知系统配置分析——以“8摄像头+1毫米波雷达+12超声波雷达”为例1.引言自动驾驶系统依赖于传感器来感知周围环境,并基于此做出实时决策。不同类型的传感器各自有不同的特性,能够应对不同的场景和环境条件。摄像头、毫米波雷达、超声波雷达的组合能够在视觉、距离、速度和障碍物感知等方面提供全面的支持。本章节将详细介绍“8摄像头+1毫米波雷达+12超声波雷达”配置的设计思路、优势、各传感器的参数,以
- 无人机的任务载荷指的是什么?看了这篇文你就明白了!!!
云卓SKYDROID
无人机高科技云卓科技无人机载重
传感器载荷包括但不限于:摄像头和光学传感器:如高分辨率摄像头、红外线航空摄影仪、光学/红外成像设备等,用于精准地捕捉图像和数据信息。雷达传感器:如毫米波雷达、合成孔径雷达(SAR)等,能够在夜间和恶劣气候条件下工作,穿透云层、雾和战场遮蔽,进行大范围成像。激光雷达(LiDAR):利用激光束进行探测与测量,不仅可以探测到簇叶下的目标,还可以对目标进行分类,为地面部队提供精确目标信息。多光谱相机:用于
- 自动驾驶领域成长方案
树上求索
自动驾驶人工智能机器学习
一、学习目标成为自动驾驶领域专家,全面掌握自动驾驶技术体系,能独立进行自动驾驶系统设计、开发与优化,解决实际工程问题。二、成长阶段(一)基础理论奠基期(1-2年)专业知识学习:学习数学(高等数学、线性代数、概率论与数理统计、数值分析等),为理解算法和模型提供数学基础;深入研究自动驾驶涉及的专业课程,如控制理论、传感器原理(激光雷达、摄像头、毫米波雷达等)、机器学习(监督学习、无监督学习、深度学习)
- 科技快讯 | OpenAI首次向免费用户开放推理模型;特朗普与黄仁勋会面;雷军回应“10后小学生深情表白小米SU7”
最新科技快讯
科技
不用开口:谷歌AI帮你致电商家,价格、预约一键搞定谷歌在1月30日推出SearchLabs中的“AskforMe”实验性功能,用户可利用AI代替自己致电商家咨询价格和服务。该功能已与美汽车修理厂和美甲沙龙店合作,用户需加入SearchLabs并搜索相关短语进行测试。功能使用部分预订餐厅技术,目前处于测试阶段。我国光子毫米波雷达技术取得突破性进展,为6G技术应用奠定基础1月27日,据新华社报道,南开
- Python实现复原毫米波雷达呼吸波形的示例
go5463158465
python算法机器学习python开发语言
以下是一个使用Python实现复原毫米波雷达呼吸波形的示例,该示例将涉及模型算法在重建损失和KL(Kullback-Leibler)损失之间的平衡问题。我们将使用深度学习中的变分自编码器(VAE)作为模型来进行呼吸波形的复原,因为VAE可以很好地处理重建和潜在空间分布的问题。步骤概述数据准备:生成或加载毫米波雷达的呼吸波形数据。定义VAE模型:包括编码器和解码器。定义损失函数:结合重建损失和KL损
- 自动驾驶(Automated Driving)系统组成和主要技术--以思维导图形式介绍
大连海事的亲外甥
自动驾驶人工智能机器学习
一、自动驾驶概念介绍自动驾驶是指汽车依靠传感器、高精度地图和复杂的算法等,不需要驾驶员操作而自动完成驾驶的技术。二、自动驾驶系统组成和主要技术架构图思维导图形式绘制1、感知层传感器模块:包括摄像头、激光雷达、毫米波雷达和超声波雷达等,用于获取车辆周围环境的数据,如道路状况、其他车辆、行人和障碍物等。定位传感器模块:包括GNSS(全球导航卫星系统)、INS(惯性导航系统)和视觉SLAM等,用于确定车
- 2-93 基于matlab的无人机FMCW(频率调制连续波)毫米波高度计雷达仿真
'Matlab学习与应用
matlab工程应用matlab无人机开发语言毫米波高度计雷达仿真频率调制连续波FMCW
基于matlab的无人机FMCW(频率调制连续波)毫米波高度计雷达仿真,不考虑环境杂波和收发信号隔离泄漏。通过考虑雷达天线、波束形成、信号传播、回波接收等环节影响。建立FMCW毫米波雷达系统的数学模型,评估无人机在不同高度下的高度测量性能。程序已调通,可直接运行。下载源程序请点链接:2-93基于matlab的无人机FMCW(频率调制连续波)毫米波高度计雷达仿真
- 自动驾驶之心规划控制理论&实战课程
vsdvsvfhf
自动驾驶人工智能机器学习
单目3D与单目BEV全栈教程(视频答疑)多传感器标定全栈系统学习教程多传感器融合:毫米波雷达和视觉融合感知全栈教程(深度学习传统方式)多传感器融合跟踪全栈教程(视频答疑)多模态融合3D目标检测教程(视频答疑)规划控制理论&实战课程国内首个BEV感知全栈系列学习教程首个基于Transformer的分割检测视觉大模型视频课程CUDA与TensorRT部署实战课程(视频答疑)Occupancy从入门到精
- 2021年汽车传感器行业研究报告
行研君.嵇睿麒
自动驾驶其他
核心观点:自动驾驶加速渗透,推动汽车传感器市场的高速增长。传感器是自动驾驶的关键,当前主流自动驾驶传感器主要包括毫米波雷达、车载摄像头以及超声波雷达。2020年国内L2级别自动驾驶的渗透率已近15%。车企相继推出具备L3功能的自动驾驶车型。随着自动驾驶等级的提高,对传感器的数量和质量也提出了更高的要求,L2级自动驾驶传感器数量约为6个,L3约为13个,未来L5要达到30个以上,相应带动汽车传感器市
- 智能汽车「利好」数据服务,特斯拉/英伟达/大众都在布局
高工智能汽车
自动驾驶
硬件预埋,正在推动智能驾驶行业进入数据驱动迭代周期。今年,英伟达在Orin进入规模上量阶段的同时,推出了DriveMap,基于精确测绘数据与匿名众包数据相结合,提供厘米级的定位精度。后者,由搭载英伟达Hyperion架构的车辆提供数据众包,包括来自摄像头、激光雷达和毫米波雷达的数据。所有这些数据,从车端不断上传到云端。然后,加载到英伟达的Omniverse平台,后者是一个为虚拟仿真和实时物理精确模
- 智能汽车行业产业研究报告:毫米波雷达优势明显,核心壁垒是芯片、天线阵列、波形设计
人工智能学派
汽车
今天分享的是智能汽车系列深度研究报告:《智能汽车行业产业研究报告:毫米波雷达优势明显,核心壁垒是芯片、天线阵列、波形设计》。(报告出品方:国泰君安证券)报告共计:67页毫米波雷达被广泛的应用在车载感知识别中毫米波波长短、频段宽,比较容易实现窄波束,雷达分辨率高,不易受干扰。波长介于1~10mm的电磁波,频率大致范围是30GHZ~300GH2。毫米波雷达是测量被测物体相对距离、相对速度、方位的高精度
- 智能汽车行业产业研究报告:4D成像毫米波雷达—自动驾驶最佳辅助
人工智能学派
自动驾驶人工智能机器学习
今天分享的是智能汽车系列深度研究报告:《智能汽车行业产业研究报告:4D成像毫米波雷达—自动驾驶最佳辅助》。(报告出品方:开源证券)报告共计:43页视觉感知最佳辅助——4D成像毫米波雷达感知是自动驾驶的首要环节,高性能传感器必不可少感知环节负责对侦测、识别、跟踪目标,是自动驾驶实现的第一步。自动驾驶的实现,首先要能够准确理解驾驶环境信息,需要对交通主体、交通信号、环境物体等信息进行有效捕捉,根据实时
- 华为问界M9:全方位自动驾驶技术解决方案
华西建筑关联专业公司 华鲲智慧
自动驾驶人工智能机器学习
华为问界M9的自动驾驶技术采用了多种方法来提高驾驶的便利性和安全性。以下是一些关键技术:智能感知系统:问界M9配备了先进的传感器,包括高清摄像头、毫米波雷达、超声波雷达等,这些传感器可以实时监测车辆周围的环境,并自动识别行人、车辆、交通信号等,为自动驾驶提供更加精准的数据支持。这种全场景的智能感知能够实现全天候、全路况的智能感知,提高驾驶的便利性和安全性。自动驾驶辅助系统:华为自主研发的Drive
- 4D毫米波雷达
sangba2019
#毫米波雷达自动驾驶fpga开发毫米波雷达4D毫米波雷达
主流雷达供应商的4D成像雷达方案梳理csdn链接德国大陆集团(以下简称大陆)深耕车载毫米波雷达数十年,自2016年推出划时代的ARS4XX77GHz毫米波前向雷达和BSD3XX24GHz毫米波盲区检测雷达,目前前向雷达和角雷达产品已更迭至第五代,客户包括了戴姆勒、宝马、大众、丰田等知名主机厂。2020年大陆推出了4D成像雷达ARS540,采用4颗射频芯片级联的方式,实现12发射通道,16接收通道高
- 2.1.3 毫米波雷达
人工智能
毫米波雷达更多内容,请关注:github:https://github.com/gotonote/Autopilot-Notes.git毫米波雷达(RADAR),和激光雷达的原理类似,是工作在毫米波波段(millimeterwave)探测的雷达。通常毫米波是指30~300GHz频域(波长为1~10mm)的。毫米波的波长介于微波和厘米波之间,因此毫米波雷达兼有微波雷达和光电雷达的一些优点。同厘米波导
- 2.1.2 激光雷达
人工智能
激光雷达更多内容,请关注:github:https://github.com/gotonote/Autopilot-Notes.git激光雷达是自动驾驶领域非常依赖的传感器,越来越多的自动驾驶公司看好激光雷达的应用前景。激光雷达是实现更高级别自动驾驶(L3级别以上),以及更高安全性的良好途径,相比于毫米波雷达,激光雷达的分辨率更高、稳定性更好、三维数据也更可靠。一、原理激光雷达(LightDete
- 坐标变换(2)—不同坐标系下的变换
lewif5231
如下图所示,在自动驾驶车辆上会存在大量冗余的传感器,例如轮速传感器、激光雷达,毫米波雷达,摄像头,超声波雷达,GPS,IMU等。不同传感器对同一物体的测量原始结果都是在自身坐标下,所以首先我们需要对多传感器就行标定(即获得不同坐标系之间的变换关系,多传感器的标定是个非常复杂且困难的问题,这里先不介绍),将所有传感器的输出统一到一个坐标系下。图1.自动驾驶车辆上的多传感器本文主要介绍不同坐标系之间变
- TI 毫米波雷达开发系列之mmWave Studio 和 Visuiallizer 的异同点&雷达影响因素分析
雷达爆破手
毫米波雷达mmWaveRadar毫米波雷达AWR/IWR系列
TI毫米波雷达开发之mmWaveStudio和Visuiallizer的异同点引入整个雷达系统研究的目标分析影响这个目标的因素硬件影响因素——雷达系统的硬件结构(主要是雷达收发机)AWR1642芯片硬件系统组成MSS和DSS概述MSS和DSS分工BSS的分工AWR1642组成及分工总结雷达收发机对雷达检测效果的影响影响雷达测距效果的因素测速及其他指标的影响三种调参方式的对比软件影响因素——信号处理
- TI毫米波雷达开发——High Accuracy Demo 串口数据接收及TLV协议解析 matlab 源码
雷达爆破手
matlab开发语言
TI毫米波雷达开发——串口数据接收及TLV协议解析matlab源码前置基础源代码功能说明功能演示视频文件结构01.bin/02.binParseData.mread_file_and_plot_object_location.mread_serial_port_and_plot_object_location.m函数解析configureSport(comportSnum)readUartCall
- 电动汽车雷达技术概述 —— FMCW干扰问题
初心不忘产学研
自动驾驶汽车嵌入式硬件电动汽车传感器雷达FMCW毫米波雷达雷达技术
一、电动汽车上有多少种传感器?智能电动汽车(包括自动驾驶汽车)集成了大量的传感器来实现高级驾驶辅助系统(ADAS)、自动驾驶功能以及车辆状态监测等功能。以下是一份相对全面的智能电动汽车中可能使用到的传感器列表:环境感知传感器:激光雷达(LiDAR):提供高精度三维点云数据,用于构建周围环境模型。毫米波雷达(MMWRadar):长距离和短距离雷达,检测与前方、后方及侧面物体的距离、速度和角度信息。视
- 毫米波雷达在汽车领域的原理、优势和未来趋势
马上到我碗里来
自动驾驶毫米波雷达无人驾驶
1毫米波雷达的原理汽车引入毫米波雷达最初主要是为了实现盲点监测和定距巡航。毫米波实质上是电磁波,其频段位于无线电和可见光、红外线之间,频率范围为10GHz-200GHz。工作原理类似一般雷达,通过发射无线电波并接收回波,利用障碍物反射波的时间差确定障碍物距离,通过反射波的频率偏移确定相对速度。2毫米波雷达未被抛弃的原因2.1天气原因激光雷达在极端天气下性能受限,而毫米波雷达能够穿透雾、雨、雪等,适
- 2023-02-24
醉爱琳儿
A股2月24日纪要大盘上涨的空间太小。静待靴子落地吧。阅读蕴藏着无尽可能,有益于明理、增信、崇德、力行,让人生绽放光彩。朋友们,早上好,今天是2月24日星期五,周四大小指数冲高回落,上证指数以绿盘报收,创业板指数小幅收涨。两市合计成交8079亿元,较上日略微有些增加。盘面上盘面上看,光伏、汽车、券商、农业、煤炭等板块走强,银行、地产、有色等板块上扬;软件、酿酒、医药等板块下挫;毫米波雷达、一体压铸
- 自动驾驶中的传感器
huangyi_200502
自动驾驶
目录摄像头激光雷达毫米波雷达惯性传感器(IMU)超声波雷达声明摄像头对比Radar、Lidar、Sonar来讲,Camera最接近人眼识别原理,在自动驾驶传感器中担任重要角色。摄像头可以拥有较广的视场角、较大的分辨率,还可以提供颜色和纹理等信息。这些信息对于实现自动驾驶功能是存在很大帮助的。摄像头是将光学组件获得的光信号,投射到图像传感器上,完成由光信号到电信号的转换,然后再转换为数字图像信号,最
- 自动驾驶模拟如此“吃”算力,你的工作站扛得住吗?
戴尔科技
自动驾驶人工智能机器学习
今年的亚运会让杭州“火出了圈”,除了各种高度自动化的场馆设施之外,无人物流配送车和自动驾驶公交车也开始正式运营,给市政交通增添了一分科幻色彩。杭州的自动驾驶公交车配备了3个激光雷达、4个毫米波雷达和5个摄像头,300米范围内的障碍物都能被识别和准确避开,精度达到厘米级。自动驾驶巴士通过在沿线全路段部署高清相机、雷达等智能感知设备,实现路网全息感知,并依托车路协同技术,实现了车与路的智慧互联,有效提
- 基于Ti-AWR2944雷达开发板的DDM发射与处理实践
墨@#≯
自动驾驶全栈工程师的毫米波雷达部分经验分享车载毫米波雷达FMCW雷达DDMA发射模式Ti-AWR2944
说明我在之前的博文中有说过如下观点:MIMO体制下,有两个核心的问题需要解决:一是天线如何排布;二是天线如何发射。天线的排布问题主要涉及到测角,它与射频面板尺寸要求、单天线尺寸、最大无模糊测角范围、角度分辨率以及测角算法等有关,关于角度测量我之前有过一篇博文:车载毫米波雷达DOA估计综述-CSDN博客。天线的发射问题主要是考虑到正交性:如何在后端将各个收发通道给分离出来,现阶段有TDM、BPM、F
- PMCW体制雷达系列文章(2) - PMCW雷达与CDM
墨@#≯
自动驾驶全栈工程师的毫米波雷达部分PMCW雷达经验分享自动驾驶
说明多发多收(MIMO)体制下关于天线阵列有两个核心的问题:一是天线阵列怎么排布;二是这么多发射通道如何发射。这两点不管对于FMCW雷达还是PMCW雷达都同样适用。关于雷达的发射问题,我之前写过一篇博文:车载毫米波雷达MIMO阵列的天线发射问题-CSDN博客,那篇博文及其参考文献其实已经把雷达的发射问题(现有的发射模式)基本囊括了。PMCW体制下我们一般基于CDM来实现多个发射通道的同时发射。本文
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR