- 利用matlab实现贝叶斯优化算法(BO)优化支持向量机回归(SVR)的超参数
是内啡肽耶
算法matlab支持向量机机器学习回归
【导读】在机器学习建模中,支持向量机(SVM)回归模型的效果高度依赖超参数选择。但手动调参就像"大海捞针",而网格搜索又面临"计算爆炸"的难题。今天给大家介绍一个智能调参黑科技——贝叶斯优化算法。通过Matlab实现,只需几分钟就能让模型性能自动升级!一、为什么要用贝叶斯优化调参?传统调参三大痛点:C参数(正则化强度):过小导致过拟合,过大削弱模型能力ε参数(不敏感区域):决定对预测误差的容忍度核
- 【flask扩展】Flask-SQLAlchemy的安装与配置
爱音斯坦牛
flask框架从入门到实战flaskpython后端
个人简介作者简介:大家好,我是阿牛,全栈领域新星创作者。博主的个人网站:阿牛的博客小屋支持我:点赞+收藏⭐️+留言系列专栏:flask框架快速入门格言:要成为光,因为有怕黑的人!目录个人简介前言Flask-SQLAlchemy的介绍与数据库驱动的选择Flask-SQLAlchemy与flask-mysqldb的安装Flask-SQLAlchemy的配置其他常用的SQLAlchemy字段类型常用的S
- [学习笔记] Windows编程——GDI——(六)设备上下文
根本没在怕哦
Windows编程学习笔记windows
前言:学习笔记,随时更新。如有谬误,欢迎指正。说明:红色字体为较为重要部分。绿色字体为个人理解部分。原文链接:https://learn.microsoft.com/en-us/windows/win32/gdi/device-contexts6设备上下文设备上下文是一种结构,用于定义一组图形对象及其关联属性,以及影响输出的图形模式。图形对象包括用于线条绘制的笔、用于绘制和填充的画刷、用于复制或滚
- [学习笔记] Windows编程——GDI——(三)裁剪
根本没在怕哦
Windows编程学习笔记windows
前言:学习笔记,随时更新。如有谬误,欢迎指正。说明:红色字体为较为重要部分。绿色字体为个人理解部分。原文链接:https://learn.microsoft.com/en-us/windows/win32/gdi/clipping3裁剪剪裁是将输出限制为应用程序窗口的工作区中的某个区域或路径的过程。3.1关于裁剪应用程序通过多种方式使用剪裁。Word和Excel应用程序剪裁键盘输入,使其不显示在页
- 票星球自动抢票脚本:助你轻松抢到心仪门票
高慧霜Grain
票星球自动抢票脚本:助你轻松抢到心仪门票项目地址:https://gitcode.com/open-source-toolkit/ea073项目介绍在抢票高峰期,手动抢票往往让人心力交瘁。为了解决这一痛点,我们推出了票星球自动抢票脚本,这是一个开源的Git仓库,旨在为用户提供一个简单易用的自动抢票工具。通过导入资源文件并根据个人需求修改配置,用户可以轻松实现自动抢票,无需手动操作,大大提高了抢票的
- 机器学习的下一个前沿是因果推理吗?——探索机器学习的未来方向!
真智AI
人工智能机器学习
机器学习的进化:从预测到因果推理机器学习凭借强大的预测能力,已经彻底改变了多个行业。然而,要实现真正的突破,机器学习还需要克服实践和计算上的挑战,特别是在因果推理方面的应用。未来,因果推理或许将成为推动机器学习发展的新前沿。什么是因果推理,它如何与机器学习相关?如果你和我一样没有数学背景,你可能会好奇“因果推理”到底意味着什么?它与机器学习又有什么关系?当我刚开始学习机器学习时,第一次听到“因果推
- DeepSeek+元脑企智大模型一体机(培训交流)
互联网之路.
deepseek
互联网各领域资料分享专区(不定期更新):Sheet获取方式:请用手机点击链接进行保存,会自动赠送1TB内存,若链接生效请及时后台留言,谢谢。链接如下(夸克网盘):夸克网盘分享免责声明:1)所共享的所有内容均来源于网络共享资源,版权归原作者或企业所有,下载的任何资源仅能用于学习和研究目的,请勿用于商业用途,否则后果自负。2)尊重版权,这些资源仅供个人学习和交流使用,请勿用于商业用途。本文档仅做整理。
- TK矩阵:提高多账号管理效率的利器
m0_74891046
矩阵
随着TikTok的火爆,越来越多的人开始利用这个平台进行内容创作和社交互动。无论是个人创作者、品牌方,还是营销公司,TikTok都提供了巨大的机会,但同时也带来了运营上的挑战,尤其是在管理多个账户时。每个账号的维护、内容发布、互动和数据分析,都需要耗费大量的时间和精力。TK矩阵是为了应对这些挑战而推出的一款工具,它为需要操作多个TikTok账号的用户提供了一种更高效、更安全的管理方式。基于云技术和
- //案例1:手机号屏蔽 作用:157****2873 //案例2:身份证信息查看 //给出身份证号码 //要求输出 个人信息: //xx
漫漫不慢.
javaapache开发语言
packagetest9;publicclassPhone{publicstaticvoidmain(String[]args){//案例1:手机号屏蔽作用:157****2873StringPhonenumber="15712342873";Stringstr1=Phonenumber.substring(0,3);Stringstr2=Phonenumber.substring(7);Syst
- 订单管理系统 大学生数据库大作业/数据库实践MYSQL
陌路物是人非
数据库课程设计
订单管理系统从入门到入土下载Maven,Nodejs创建一个数据库sql_end,创建四个数据库表,并确保用户名为root用户密码为123456再IDEA中加载Springboot依赖(可以直接新建一个任意名称的文件夹,项目导入spring的框架),启动spring项目打开index.html输入用户名和密码,点击注册,再点击登录点击个人中心,点击修改用户信息,修改自己的余额点击逛店铺,选择一个商
- SpringCloudAlibaba:从0搭建一套快速开发框架-05 公共模块(common)编写与优化:提升开发效率实践
辉辉.
SpringCloud2022javaspringcloudspringboot微服务
序言:上篇主要介绍了OpenFeign的集成使用,本篇主要优化完善公共模块。公共模块介绍本片主要针对于我个人创建的公共模块(shine-common)展开。shine-common模块的总体功能可以概括为提供系统中的基础通用功能和工具,旨在为其他模块和服务提供一些重复使用的逻辑、工具方法以及规范化的处理方式。具体功能如下:基础常量与配置支持提供项目中需要的常量定义和全局配置项。这样可以避免硬编码常
- 深入解析LTE-A到5G的系统消息架构与功能演进
罗博深
本文还有配套的精品资源,点击获取简介:系统消息是移动通信网络中,UE与网络间信息交换的核心,涵盖了网络状态、服务信息与系统配置。文章深入分析了4GLTE-A到5G网络中系统消息的组成、作用及其演进,包括MIB和SIBs的功能与内容,以及5G对系统消息的优化和新技术的引入,如动态调度、网络切片和针对物联网设备的特定参数配置。5G系统消息还通过机器学习和大数据分析实现智能化分发,增强了网络灵活性、智能
- Android Framework学习——安卓进程启动流程(Android 13)
Big Popsicle
android学习
提示:本文仅作个人学习记录,禁止转载本文参考:袁神的文章,理解Android进程创建流程文章目录1,前言2,简略步骤3,代码走读3.1,提要,从系统启动末尾开始3.2,system_server发起请求3.3,Zygote创建进程3.4,新进程的运行总结1,前言进程是作为应用程序容器存在的,每个应用启动前需要先创建一个进程,进程是由Zygote进程孵化来的,它拥有独立的资源空间,用来运行四大组件,
- 解决约束多目标优化问题的新方法:MOEA/D-DAE算法深度解析
木子算法
多目标优化人工智能算法多目标人工智能
解决约束多目标优化问题的新方法:MOEA/D-DAE算法深度解析在工程优化、机器学习等众多领域,约束多目标优化问题(CMOPs)广泛存在。传统方法在处理这类问题时,常因可行区域不连通或约束违反局部极小点陷入停滞。近期,IEEETransactionsonEvolutionaryComputation上的一篇论文提出了一种新颖的解决方案——MOEA/D-DAE算法,通过结合检测-逃逸策略(DAE)和
- python 人工智能实战案例
2401_86114612
pygamepythonjava
大家好,今天我们要分享,python编程人工智能小例子python人工智能100例子,一起探索吧!1.背景介绍概述在这个世纪,人类已经处于数字化的时代,而这也让很多其他行业都进入了数字化领域python列表有哪些基本操作,python列表功能很重要吗。其中包括游戏行业。游戏行业的蓬勃发展促使机器学习的产生,通过计算机能够进行高效率地模拟人类的学习、决策过程,不断升级提升人类的能力。游戏领域中的AI
- Python 在人工智能领域的实际6大案例
Solomon_肖哥弹架构
人工智能机器学习python
Python作为一种功能强大且易于学习的编程语言,在人工智能(AI)领域得到了广泛的应用。从机器学习到深度学习,从自然语言处理到计算机视觉,Python提供了丰富的库和框架,使得开发者能够快速实现各种AI应用。本文将通过多个实际案例,展示Python在人工智能领域的强大功能和应用前景。二、案例一:手写数字识别(MNIST)1.背景介绍手写数字识别是机器学习领域的经典入门项目,MNIST数据集包含了
- 基于AI算法实现的情感倾向分析的方法
程序员奇奇
计算机毕设人工智能算法
完整代码:https://download.csdn.net/download/pythonyanyan/87430621背景目前,情感倾向分析的方法主要分为两类:一种是基于情感词典的方法;一种是基于机器学习的方法,如基于大规模语料库的机器学习。前者需要用到标注好的情感词典,英文的词典有很多,中文主要有知网整理的情感词典Hownet和台湾大学整理发布的NTUSD两个情感词典,还有哈工大信息检索研究
- 机器学习算法实战——天气数据分析(主页有源码)
喵了个AI
机器学习实战机器学习算法数据分析
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.引言天气数据分析是气象学和数据科学交叉领域的一个重要研究方向。随着大数据技术的发展,气象数据的采集、存储和分析能力得到了显著提升。机器学习算法在天气数据分析中的应用,不仅能够提高天气预报的准确性,还能为气候研究、灾害预警等提供有力支持。本文将介绍机器学习在天气数据分析中的应用,探讨
- DeepSeek结合Python炒股:编写量化交易策略的5个关键技巧
财云量化
程序化交易量化交易python炒股自动化pythonDeepSeek股票量化接口股票程序化交易
python炒股(0):申请官方API接口,个人账户无门槛python炒股自动化(1):量化交易接口区别Python炒股自动化(2):取股票实时数据和历史数据Python炒股自动化(3):分析实时数据和历史数据Python炒股自动化(4):通过接口向交易所报单炒股自动化(5):通过接口查单查账炒股自动化:散户也可以申请官方API接口量化交易的核心在于将策略思想转化为可执行的代码,本文结合券商的AP
- self-attention为什么要除以根号d_k
想念@思恋
python编程概率论深度学习机器学习
self-attention的公式为attention(Q,K,V)=Softmax(QKdk)Vattention(Q,K,V)=Softmax(\frac{QK}{\sqrt{d_{k}}})Vattention(Q,K,V)=Softmax(dkQK)V个人理解,除以dk\sqrt{d_{k}}dk的原因有两点:dkd_{k}dk是词向量/隐藏层的维度1、首先要除以一个数,防止输入softm
- Dubbo请求调用本地服务
Lorin 洛林
Java后端经典面试题dubbo
文章目录前言配置Dubbo本地调用方法一:application.yml中配置方法二:@DubboReference注解中指定注意个人简介前言在微服务架构中,ApacheDubbo作为一款高性能、轻量级的RPC框架,被广泛应用于分布式系统。通常,Dubbo服务是跨进程调用的,但在开发和测试过程中,有时需要在本地调用Dubbo服务,以方便调试和验证。配置Dubbo本地调用默认情况下,Dubbo通过注
- 【Python机器学习】2.2. 聚类分析算法理论:K均值聚类(KMeans Analysis)、KNN(K近邻分类)、均值漂移聚类(MeanShift)
SomeB1oody
Python机器学习机器学习算法python聚类分类算法
喜欢的话别忘了点赞、收藏加关注哦(关注即可查看全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(=・ω・=)2.2.1.K均值聚类(KMeansAnalysis)K均值算法是以空间中K个点为中心进行聚类,对最靠近他们的对象归类,是聚类算法中最为基础但也最为重要的算法。数学原理计算数据点与各簇中心点的距离:dist(xi,ujt){dist}(x_i,u_j^t)dist(xi,ujt)然后根据
- 【Linux】日志插件
s_little_monster_
Linuxlinux数据库oracle运维学习经验分享笔记
个人主页~日志插件一、日志文件的重要性二、日志文件的简单实现1、comm.hpp2、log.hpp三、测试用例一、日志文件的重要性故障排查与问题定位快速发现问题:日志能够实时记录系统运行过程中的各种事件和状态信息,当系统出现故障或异常时,通过查看日志可以快速察觉到问题的发生,例如,服务器突然崩溃,日志中可能会记录下崩溃前的错误信息、异常堆栈,帮助运维人员第一时间得知系统出现了故障精准定位根源:详细
- Julia语言的学习路线
樟松
包罗万象golang开发语言后端
Julia语言学习路线指南引言在编程语言层出不穷的今天,Julia作为一门新兴的高级编程语言,以其出色的性能和易用性逐渐获得了越来越多的关注。特别是在科学计算、数据分析和机器学习等领域,Julia的表现十分出色,成为研究人员和开发者的热门选择。本文将为希望学习Julia语言的读者提供一条详细的学习路线,包括基础知识、工具、库、项目和实践经验等,帮助大家有效地掌握这门语言。一、了解Julia语言在开
- 【机器学习】基于t-SNE数据可视化工程
无水先生
AI原理和python实现人工智能综合人工智能算法
一、说明t-SNE(t-DistributedStochasticNeighborEmbedding)是一种常用的非线性降维技术。它可以将高维数据映射到一个低维空间(通常是2D或3D)来便于可视化。Scikit-learnAPI提供TSNE类,以使用T-SNE方法可视化数据。在本教程中,我们将简要学习如何在Python中使用TSNE拟合和可视化数据。二、t-SNE是个什么?2.1什么是t-SNE?
- 数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践
kkchenkx
数据挖掘信息可视化算法聚类均值算法数据挖掘机器学习
数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践数据降维简介降维技术的重要性在数据科学和机器学习领域,数据降维是一种关键的技术,用于减少数据集的维度,同时保留数据的结构和重要信息。降维不仅可以帮助我们更有效地存储和处理数据,还能在高维数据中发现潜在的模式和结构,这对于数据可视化和模型训练尤为重要。高维数据往往难以直观理解,通过降维,我们可以将其转换为二维或三维空间,便于可视化
- 高效快速教你deepseek如何进行本地部署并且可视化对话
chatgpt
随着最近一个新的人工智能deepseek的爆火,很多大佬都开始了在本地进行deepseek的部署操作,并且离线也可以使用,这里的话我就一步一步带你们部署本地的deepseek,说实话这个人工智能的实力不亚于openai的gpt安装ollama我们需要先安装ollama,安装地址ollama,我们直接点击下载,我们在下载的时候尽量使用我们的谷歌浏览器,有魔法的最好带上魔法,不然安装的时候可能会出问题
- useblackbox黑箱AI编码助理
百态老人
python开发语言
黑箱AI是一个人工智能的编码助理可以让代码快10倍。它使您能够把任何问题变成代码和功能,如从任何视频提取代码和代码自动完成。它有以下几个特点:可以从视频、图片、PDF等格式中复制代码。可以将任何问题转换成代码。可以快速找到任何代码片段,并开始编码。支持20多种编程语言的代码自动补全。有Chrome扩展和VSCode扩展。这个网站有不同的收费方案,根据你需要的功能和使用量而定。它有以下几种选择:好开
- web开发技术栈个人总结
蓝砖科技HR_金庆硕
前端
编程:Spring是一个非常强大的Java框架,被设计为帮助开发者更快速、容易地创建复杂的应用程序。Spring框架的核心是控制反转(IoC)和依赖注入(DI),它们提供了一种方法,允许开发者定义对象的依赖关系,而不是硬编码这些关系。这增加了可维护性和可测试性Spring框架有很多模块和子项目,这些可以根据应用程序的需求进行选择。下面是一些主要的Spring项目及其用途:SpringFramewo
- 数据分布偏移检测:保障模型在生产环境中的稳定性
trust Tomorrow
机器学习python机器学习人工智能深度学习
数据分布偏移检测:保障模型在生产环境中的稳定性引言在机器学习系统从开发环境部署到生产环境的过程中,数据分布偏移问题是影响模型性能的主要挑战之一。当训练数据与生产环境中的数据分布不一致时,即使是经过精心调优的模型也可能表现出明显的性能下降。本文将深入探讨数据分布偏移的检测方法,并提供一套系统化的解决方案,帮助读者构建更加稳健的机器学习系统。1.数据分布偏移问题概述1.1分布偏移的类型数据分布偏移主要
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,