Java系列之ReentrantReadWriteLock

1. ReentrantReadWriteLock可重入读写分离锁

public ReentrantReadWriteLock() {
        this(false);
    }

public ReentrantReadWriteLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
        readerLock = new ReadLock(this);
        writerLock = new WriteLock(this);
    }

核心类Sync继承AbstractQueuedSynchronizer

 Sync() {
            readHolds = new ThreadLocalHoldCounter();
            setState(getState()); // ensures visibility of readHolds
        }

// 代表位数的分界线,因为int有32位,前16位由读共享锁来使用,后16位由写排斥锁使用
static final int SHARED_SHIFT   = 16;
// 前16的最小值也就是读锁的基础占位至少是65536,也就是读锁的基值
        static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
// 代表每种锁可获取的最大次数
        static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
// 排斥锁的标识,通过次数与上这个15位全1的值就是排斥锁的次数
        static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;

        /** Returns the number of shared holds represented in count  */
        static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }
        /** Returns the number of exclusive holds represented in count  */
        static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; } 

2. 读锁ReadLock。可中断和非中断获取锁

public void lock() {
            sync.acquireShared(1);
        }

 public final void acquireShared(int arg) {
        if (tryAcquireShared(arg) < 0)
            doAcquireShared(arg);
    }

 public void lockInterruptibly() throws InterruptedException {
            sync.acquireSharedInterruptibly(1);
        }

public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }

实现父类方法尝试获取锁tryAcquireShared,先判断当前写锁有没有被别的线程占用,即通过状态的后15位相与,被占用并且占用线程不是本线程则直接返回-1,进入队列等待。

 protected final int tryAcquireShared(int unused) {
            /*
             * Walkthrough:
             * 1. If write lock held by another thread, fail.
             * 2. Otherwise, this thread is eligible for
             *    lock wrt state, so ask if it should block
             *    because of queue policy. If not, try
             *    to grant by CASing state and updating count.
             *    Note that step does not check for reentrant
             *    acquires, which is postponed to full version
             *    to avoid having to check hold count in
             *    the more typical non-reentrant case.
             * 3. If step 2 fails either because thread
             *    apparently not eligible or CAS fails or count
             *    saturated, chain to version with full retry loop.
             */
            Thread current = Thread.currentThread();
            int c = getState();
            if (exclusiveCount(c) != 0 &&
                getExclusiveOwnerThread() != current)
                return -1;
            int r = sharedCount(c);
            if (!readerShouldBlock() &&
                r < MAX_COUNT &&
                compareAndSetState(c, c + SHARED_UNIT)) {
                if (r == 0) {
                    firstReader = current;
                    firstReaderHoldCount = 1;
                } else if (firstReader == current) {
                    firstReaderHoldCount++;
                } else {
                    HoldCounter rh = cachedHoldCounter;
                    if (rh == null || rh.tid != getThreadId(current))
                        cachedHoldCounter = rh = readHolds.get();
                    else if (rh.count == 0)
                        readHolds.set(rh);
                    rh.count++;
                }
                return 1;
            }
            return fullTryAcquireShared(current);
        }

判断当前读有没有被阻塞,也就是readerShouldBlock,公平和非公平方式的实现如下,当没有写锁时,公平锁的队列中的是没有数据的,非公平也会通过apparentlyFirstQueuedIsExclusive返回false,当有写锁时,就会进入队列s.isShared()为ifalse,这时公平锁或者非公平锁都会检验到第一个等待元素为获取写锁的,所以就会返回true。

 static final class NonfairSync extends Sync {
        private static final long serialVersionUID = -8159625535654395037L;
        final boolean writerShouldBlock() {
            return false; // writers can always barge
        }
        final boolean readerShouldBlock() {
            /* As a heuristic to avoid indefinite writer starvation,
             * block if the thread that momentarily appears to be head
             * of queue, if one exists, is a waiting writer.  This is
             * only a probabilistic effect since a new reader will not
             * block if there is a waiting writer behind other enabled
             * readers that have not yet drained from the queue.
             */
            return apparentlyFirstQueuedIsExclusive();
        }
    }

final boolean apparentlyFirstQueuedIsExclusive() {
        Node h, s;
        return (h = head) != null &&
            (s = h.next)  != null &&
            !s.isShared()         &&
            s.thread != null;
    }


static final class FairSync extends Sync {
        private static final long serialVersionUID = -2274990926593161451L;
        final boolean writerShouldBlock() {
            return hasQueuedPredecessors();
        }
        final boolean readerShouldBlock() {
            return hasQueuedPredecessors();
        }
    }

 public final boolean hasQueuedPredecessors() {
        // The correctness of this depends on head being initialized
        // before tail and on head.next being accurate if the current
        // thread is first in queue.
        Node t = tail; // Read fields in reverse initialization order
        Node h = head;
        Node s;
        return h != t &&
            ((s = h.next) == null || s.thread != Thread.currentThread());
    }

再判断读锁数量有没有超过最大限制,最后通过cas操作设置对应的状态值。当然这三个条件的任何一个不满足就会进入死循环fullTryAcquireShared中继续执行,判断到底是哪个条件有异常,当然一般情况下该次执行就可以正确返回结果。条件满足后判断是否是第一个线程即r=0,保存第一个线程以及他执行的次数,以后每次该线程执行则进行加一操作,也就是同一个线程加几次锁,结尾时就需要释放多少次,如果不是第一个线程获取读锁,则需要通过ThreadLocal保存该线程的加锁次数以及tid信息。

3. 再次尝试获取共享锁,即在第一次获取读锁失败时会执行,还是先判断是否有写锁存在,判断读锁是否被阻塞,如果是的话这里判断本线程是否是第一个被阻塞的,是的话就算是第二次执行获取读锁的操作,可以顺利获取到重入锁,如果不是的话这里会保存当前线程信息后直接返回-1,让该线程进入等待队列中。非阻塞的话就会依次判断最后通过cas操作获取到读锁。

final int fullTryAcquireShared(Thread current) {
            /*
             * This code is in part redundant with that in
             * tryAcquireShared but is simpler overall by not
             * complicating tryAcquireShared with interactions between
             * retries and lazily reading hold counts.
             */
            HoldCounter rh = null;
            for (;;) {
                int c = getState();
                if (exclusiveCount(c) != 0) {
                    if (getExclusiveOwnerThread() != current)
                        return -1;
                    // else we hold the exclusive lock; blocking here
                    // would cause deadlock.
                } else if (readerShouldBlock()) {
                    // Make sure we're not acquiring read lock reentrantly
                    if (firstReader == current) {
                        // assert firstReaderHoldCount > 0;
                    } else {
                        if (rh == null) {
                            rh = cachedHoldCounter;
                            if (rh == null || rh.tid != getThreadId(current)) {
                                rh = readHolds.get();
                                if (rh.count == 0)
                                    readHolds.remove();
                            }
                        }
                        if (rh.count == 0)
                            return -1;
                    }
                }
                if (sharedCount(c) == MAX_COUNT)
                    throw new Error("Maximum lock count exceeded");
                if (compareAndSetState(c, c + SHARED_UNIT)) {
                    if (sharedCount(c) == 0) {
                        firstReader = current;
                        firstReaderHoldCount = 1;
                    } else if (firstReader == current) {
                        firstReaderHoldCount++;
                    } else {
                        if (rh == null)
                            rh = cachedHoldCounter;
                        if (rh == null || rh.tid != getThreadId(current))
                            rh = readHolds.get();
                        else if (rh.count == 0)
                            readHolds.set(rh);
                        rh.count++;
                        cachedHoldCounter = rh; // cache for release
                    }
                    return 1;
                }
            }
        }

4. 尝试获取读锁tryLock,实现方法tryReadLock和上面的类似都是进行判断,带有限时的类似。

 public boolean tryLock() {
            return sync.tryReadLock();
        }

final boolean tryReadLock() {
            Thread current = Thread.currentThread();
            for (;;) {
                int c = getState();
                if (exclusiveCount(c) != 0 &&
                    getExclusiveOwnerThread() != current)
                    return false;
                int r = sharedCount(c);
                if (r == MAX_COUNT)
                    throw new Error("Maximum lock count exceeded");
                if (compareAndSetState(c, c + SHARED_UNIT)) {
                    if (r == 0) {
                        firstReader = current;
                        firstReaderHoldCount = 1;
                    } else if (firstReader == current) {
                        firstReaderHoldCount++;
                    } else {
                        HoldCounter rh = cachedHoldCounter;
                        if (rh == null || rh.tid != getThreadId(current))
                            cachedHoldCounter = rh = readHolds.get();
                        else if (rh.count == 0)
                            readHolds.set(rh);
                        rh.count++;
                    }
                    return true;
                }
            }
        }

        public boolean tryLock(long timeout, TimeUnit unit)
                throws InterruptedException {
            return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
        }

5. 释放锁,核心方法tryReleaseShared,如果当前线程是第一个获取到该锁的线程,则判断获取次数,进行删除操作,如果不是的话,就先从缓存中获取最新的线程信息,该信息是最后一个获取到该锁的线程的信息。缓存中不合适的话,最后从ThreadLocal中获取线程信息,依次递减获取的次数。最后给状态值减去相应的65536后通过cas操作设置,当该状态为0时才算该锁真正释放成功,当然这有可能需要执行多次释放操作,完全取决于获取次数。

 public void unlock() {
            sync.releaseShared(1);
        }

 public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }

protected final boolean tryReleaseShared(int unused) {
            Thread current = Thread.currentThread();
            if (firstReader == current) {
                // assert firstReaderHoldCount > 0;
                if (firstReaderHoldCount == 1)
                    firstReader = null;
                else
                    firstReaderHoldCount--;
            } else {
                HoldCounter rh = cachedHoldCounter;
                if (rh == null || rh.tid != getThreadId(current))
                    rh = readHolds.get();
                int count = rh.count;
                if (count <= 1) {
                    readHolds.remove();
                    if (count <= 0)
                        throw unmatchedUnlockException();
                }
                --rh.count;
            }
            for (;;) {
                int c = getState();
                int nextc = c - SHARED_UNIT;
                if (compareAndSetState(c, nextc))
                    // Releasing the read lock has no effect on readers,
                    // but it may allow waiting writers to proceed if
                    // both read and write locks are now free.
                    return nextc == 0;
            }
        }

6. 写锁WriteLock获取锁,直接获取,尝试带超时获取,可被中断获取

public void lock() {
            sync.acquire(1);
        }

public void lockInterruptibly() throws InterruptedException {
            sync.acquireInterruptibly(1);
        }

  public boolean tryLock(long timeout, TimeUnit unit)
                throws InterruptedException {
            return sync.tryAcquireNanos(1, unit.toNanos(timeout));
        }

public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

public final void acquireInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (!tryAcquire(arg))
            doAcquireInterruptibly(arg);
    }

 public final boolean tryAcquireNanos(int arg, long nanosTimeout)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        return tryAcquire(arg) ||
            doAcquireNanos(arg, nanosTimeout);
    }

核心方法为tryAcquire,通过exclusiveCount(c)操作获取写锁数量,当状态值不为0时代表有读锁或者写锁存在,当有读锁存在时或者有别的线程持有写锁会返回false,否则就会给锁的状态累加,当状态显示没有锁时,判断现在是否写被阻塞,非公平方式永远返回false非阻塞,公平方式会判断当前等待队列中是否有别的线程存在,最后通过cas操作设置状态值,把本线程设置为当前持有写锁的线程。获取失败都会进入等待队列中。

protected final boolean tryAcquire(int acquires) {
            /*
             * Walkthrough:
             * 1. If read count nonzero or write count nonzero
             *    and owner is a different thread, fail.
             * 2. If count would saturate, fail. (This can only
             *    happen if count is already nonzero.)
             * 3. Otherwise, this thread is eligible for lock if
             *    it is either a reentrant acquire or
             *    queue policy allows it. If so, update state
             *    and set owner.
             */
            Thread current = Thread.currentThread();
            int c = getState();
            int w = exclusiveCount(c);
            if (c != 0) {
                // (Note: if c != 0 and w == 0 then shared count != 0)
                if (w == 0 || current != getExclusiveOwnerThread())
                    return false;
                if (w + exclusiveCount(acquires) > MAX_COUNT)
                    throw new Error("Maximum lock count exceeded");
                // Reentrant acquire
                setState(c + acquires);
                return true;
            }
            if (writerShouldBlock() ||
                !compareAndSetState(c, c + acquires))
                return false;
            setExclusiveOwnerThread(current);
            return true;
        }

7. 写锁尝试获取锁,和上面类似。

public boolean tryLock( ) {
            return sync.tryWriteLock();
        }

final boolean tryWriteLock() {
            Thread current = Thread.currentThread();
            int c = getState();
            if (c != 0) {
                int w = exclusiveCount(c);
                if (w == 0 || current != getExclusiveOwnerThread())
                    return false;
                if (w == MAX_COUNT)
                    throw new Error("Maximum lock count exceeded");
            }
            if (!compareAndSetState(c, c + 1))
                return false;
            setExclusiveOwnerThread(current);
            return true;
        }

8. 写锁释放,直接释放对应的次数。当全部释放后通知等待队列中的其他线程。

 public void unlock() {
            sync.release(1);
        }

 public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

protected final boolean tryRelease(int releases) {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            int nextc = getState() - releases;
            boolean free = exclusiveCount(nextc) == 0;
            if (free)
                setExclusiveOwnerThread(null);
            setState(nextc);
            return free;
        }

 

你可能感兴趣的:(Java)