- AI人工智能与自动驾驶的协同创新模式
AI大模型应用之禅
人工智能自动驾驶机器学习ai
AI人工智能与自动驾驶的协同创新模式关键词:人工智能、自动驾驶、协同创新、深度学习、计算机视觉、传感器融合、决策系统摘要:本文深入探讨了人工智能与自动驾驶技术的协同创新模式。我们将从基础概念出发,逐步分析AI如何赋能自动驾驶系统,涵盖感知、决策和控制三大核心模块。文章将通过生动的比喻解释复杂技术原理,展示实际代码实现,并探讨未来发展趋势和挑战。通过这篇文章,读者将全面理解AI与自动驾驶如何相互促进
- AUTOSAR从入门到精通-【自动驾驶】自动驾驶中的摄像头技术(二)
格图素书
人工智能深度学习
目录前言算法原理摄像头在自动驾驶中的作用与意义分类按通信协议区分按不同感光芯片按像元排列方式摄像头核心关键指标多传感器融合在自动驾驶中的应用▲不同自动驾驶等级的传感器配置▲L2级别▲L2+/3级别▲L4/5级别摄像头的种类与应用车载智能前视像头关键参数如何选择摄像头全车摄像头布置及功能前视摄像头环视摄像头后视摄像头侧视摄像头内置/外置后视摄像头雷达的种类与应用摄像头与雷达的数量配置产业与行业现状摄
- 多模态融合相机L3CAM
moonsims
人工智能
多模态融合相机L3CAML3CAM是Beamagine公司推出的多模态传感器融合技术,结合了激光雷达(LiDAR)和可见光摄像头,旨在为自动驾驶、工业机器人和其他需要精确环境感知的应用场景提供高效、安全的解决方案。L3CAM技术参数L3CAM结合了LiDAR和可见光摄像头,使其能够提供三维空间感知及图像级别的环境识别能力激光雷达部分(LiDAR)探测范围:大约200米(具体范围根据不同环境和反射面
- N-P准则下的多传感器融合(python)
不会打架的锤子
机器学习自动化算法算法pythonvscode
本文设计了一个主程序:main_sensor_fusion,和一个函数程序:cal_fuse。主程序里面包含主干部分和绘图部分,函数程序包含数据生成函数gen,检测概率计算函数cal,非0逻辑矩阵函数No_zero_value,单传感器判决函数fus_seq,多传感融合函数fusion。需要的点赞私聊if__name__=="__main__":begin_time=time()#Measurep
- Python在自动驾驶中的多传感器融合——让智能汽车“看得更清楚”
Echo_Wish
Python!实战!python自动驾驶汽车
Python在自动驾驶中的多传感器融合——让智能汽车“看得更清楚”在自动驾驶技术的演进过程中,多传感器融合(Multi-SensorFusion)是不可或缺的一环。单一传感器往往存在局限性,例如摄像头怕光线变化,激光雷达价格昂贵,毫米波雷达分辨率有限,但如果将它们结合起来,就能形成一个更全面、更可靠的环境感知系统。今天,我们就来聊聊如何用Python实现自动驾驶中的多传感器融合,并结合最新技术趋势
- Python助力自动驾驶:深度学习模型优化全攻略
Echo_Wish
Python!实战!python自动驾驶深度学习
Python助力自动驾驶:深度学习模型优化全攻略说起自动驾驶,大家第一反应往往是“高精地图”“传感器融合”“路径规划”等等,背后真正的“大脑”其实是各式各样的深度学习模型。它们负责感知环境、识别路况、预测行为,甚至实时做出决策。可是,跑在车上的这些模型不仅要精准,还得轻量、实时、稳定,这可不是简单的“丢GPU就能解决”的问题。今天,咱们就从Python开发者的视角,聊聊自动驾驶里深度学习模型的优化
- 深度剖析AI人工智能在自动驾驶中的系统优化
AI云原生与云计算技术学院
人工智能自动驾驶机器学习ai
深度剖析AI人工智能在自动驾驶中的系统优化关键词:AI人工智能、自动驾驶、系统优化、传感器融合、决策算法摘要:本文深入探讨了AI人工智能在自动驾驶系统中的优化问题。从自动驾驶的背景入手,详细解释了相关核心概念,如传感器、决策算法等。阐述了这些核心概念之间的关系,介绍了核心算法原理和具体操作步骤,还通过数学模型和公式进行了理论支持。给出了项目实战案例,分析了实际应用场景,推荐了相关工具和资源,最后探
- 从零开始搭建人形机器人SoC硬件系统:完整开发流程详解
AI天才研究院
ChatGPT计算AI人工智能与大数据机器人ai
从零开始搭建人形机器人SoC硬件系统:完整开发流程详解关键词:人形机器人、SoC硬件系统、嵌入式开发、机器人控制、传感器融合、ROS、实时操作系统摘要:本文将详细介绍从零开始搭建人形机器人SoC硬件系统的完整开发流程。我们将从硬件选型开始,逐步讲解系统架构设计、传感器集成、运动控制实现、软件系统搭建等关键环节,并通过实际案例展示如何将各个模块整合为一个完整的机器人系统。文章将采用循序渐进的方式,即
- c++ 语言在无人机应用开发中的应用
ILOVECOMPUTING
c++无人机开发语言硬件实时性能极致
C++语言在无人机应用开发中扮演着核心角色,特别是在对性能、实时性、资源利用效率和底层硬件控制有严格要求的领域。以下是其主要应用领域:飞控系统(FlightControlSystem-FCS)核心功能:这是无人机的大脑。C++用于实现核心的导航、制导与控制(GNC)算法:传感器融合:高效地融合来自IMU(加速度计、陀螺仪)、磁力计、气压计、GPS/GNSS等的数据,计算精确的姿态(俯仰、横滚、偏航
- 智能燃气泄漏检测:AI人工智能与多传感器融合的完美结合
AI智能探索者
AIAgent智能体开发实战人工智能ai
智能燃气泄漏检测:AI人工智能与多传感器融合的完美结合关键词:燃气泄漏检测、多传感器融合、人工智能、机器学习、物联网(IoT)、实时预警、安全防护摘要:燃气泄漏是家庭和工业场景中最危险的安全隐患之一——它可能引发爆炸、中毒甚至火灾。传统检测方法依赖单一传感器或人工巡检,存在误报率高、响应滞后等问题。本文将带你走进“智能燃气泄漏检测”的技术世界,通过“多传感器融合”与“AI人工智能”的双轮驱动,揭秘
- MATLAB/Simulink自动驾驶开发全流程实战:从环境感知到代码部署
AI_DL_CODE
matlab自动驾驶simulink多传感器融合路径规划车辆控制人工智能
摘要:自动驾驶技术的快速发展对开发工具提出了更高要求,MATLAB/Simulink凭借其端到端的开发环境成为行业主流选择。本文系统阐述了MATLAB/Simulink在自动驾驶系统开发中的核心应用,涵盖感知、决策、控制三层架构的技术原理与实现方法。通过SCANIA自动紧急制动系统(AEB)的完整开发案例,详细介绍了从算法设计、大规模仿真验证到硬件在环测试的全流程。文中提供了多传感器融合算法、路径
- 【Python】串口通信库pyserial2
宅男很神经
python开发语言
6.8多传感器融合:YOLO与激光雷达/雷达数据的深度结合6.8.1引言:为什么需要非视觉传感器——以激光雷达为例摄像头因其丰富的信息(颜色、纹理、形状)而成为自动驾驶、智能监控等视觉感知系统的核心。但其固有的局限性不容忽视:深度信息缺失:单目摄像头难以直接获取目标的精确三维位置和距离,需要复杂的几何或深度学习方法进行估算。光照依赖:在强光、弱光、逆光或夜晚环境下,图像质量急剧下降,导致目标检测性
- 使用MATLAB和Simulink来构建一个基于扩展卡尔曼滤波器(EKF)的定位系统
xiaoheshang_123
手把手教你学MATLAB专栏MATLAB开发项目实例1000例专栏matlabsimulink
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:定义传感器模型第三步:设计扩展卡尔曼滤波器(EKF)第四步:实现EKF控制器第五步:整合控制系统第六步:设置参考轨迹或姿态第七步:运行仿真并分析结果注意事项结论基于多传感器融合的卡尔曼滤波定位系统仿真可以帮助我们理解如何利用不同类型的传感器数据来提高四翼无人机(Quadcopter)的位置和姿态估计精度。在这个教程中,我们将使用M
- 手把手教你学Simulink--多传感器融合与高级滤波场景(50.2):基于卡尔曼滤波(EKF)在非线性系统状态估计中的应用仿真
小蘑菇二号
手把手教你学MATLAB专栏手把手教你学Simulinksimulink
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:定义非线性系统模型第三步:设计扩展卡尔曼滤波器(EKF)第四步:实现EKF控制器第五步:整合控制系统第六步:设置参考姿态或轨迹第七步:运行仿真并分析结果注意事项结论扩展卡尔曼滤波(ExtendedKalmanFilter,EKF)是处理非线性系统状态估计的一种常用方法。EKF通过线性化非线性模型来近似标准的卡尔曼滤波过程,从而实现
- 农业机器人初步了解
yuanyuanyuanccc
人工智能机器学习
引言随着技术不断地突破、市场需求的增加、社会变迁与政策支持协同驱动等因素的影响下,农业机器人的种类逐渐的增多。技术上,人工智能、多传感器融合与柔性机械设计的进步,使机器人能够适应复杂农业场景并完成除草、采摘等精细化任务;需求上,由于全球农业劳动力短缺与成本上升,农业工作逐渐使用自动化替代,同时高价值作物种植、垂直农业等新兴业态催生了定制化机器人需求;社会层面上,可持续发展压力推动精准作业以减少农药
- ROS机器人和NPU的往事和新知-250602
zhangrelay
机器人学习
往事:回顾一篇五年前的博客:ROS2机器人笔记20-12-04_ros2移植到vxworks-CSDN博客里面提及专用的机器人处理器,那时候只有那么1-2款专用机器人处理器。ROS机器人与NPU的往事与新知一、往事:从分离到融合的探索早期机器人系统的算力瓶颈传统ROS机器人依赖CPU/GPU进行感知、决策与控制,但在复杂场景(如动态环境导航、多传感器融合)中,实时性与能效比成为瓶颈。例如,基于深度
- 自动驾驶可行驶区域划分综述
吃旺旺雪饼的小男孩
自动驾驶自动驾驶人工智能机器学习
可行使区域划分1.数据采集与融合的深度解析1.1传感器类型与数据特性1.2多传感器融合方法2.环境感知与特征提取的细节2.1车道线检测技术2.2道路边界识别2.3障碍物检测与区域划分3.可行驶区域划分的实现3.1语义分割与几何建模3.2动态场景处理4.路径规划与决策的细节4.1局部路径规划4.2全局路径规划5.关键技术挑战的深入分析5.1复杂场景处理5.2实时性与计算优化5.3安全与冗余设计6.典
- AI人工智能与自动驾驶的融合创新实践
AI智能探索者
AIAgent智能体开发实战人工智能自动驾驶机器学习ai
AI人工智能与自动驾驶的融合创新实践关键词:人工智能、自动驾驶、深度学习、计算机视觉、传感器融合、路径规划、强化学习摘要:本文深入探讨了人工智能技术在自动驾驶领域的创新应用与实践。我们将从核心技术原理出发,详细分析自动驾驶系统的架构和工作流程,重点讲解计算机视觉、传感器融合、决策规划等关键模块的实现方法。通过数学模型、算法原理和实际代码案例,展示AI如何赋能自动驾驶系统实现环境感知、决策制定和车辆
- 第十天 高精地图与定位(SLAM、RTK技术) 多传感器融合(Kalman滤波、深度学习)
MarkHD
车联网深度学习人工智能
前言在自动驾驶技术快速发展的今天,高精地图与多传感器融合已成为实现L4/L5级自动驾驶的核心支柱。本文将从零基础角度,通过具体场景案例,深入解析SLAM、RTK、Kalman滤波等关键技术原理,并附MATLAB/Python代码实例演示,帮助读者构建完整知识体系。一、自动驾驶的"数字视网膜":高精地图1.1高精地图的核心特征高精地图与传统导航地图的本质区别体现在三个维度:厘米级精度:误差范围<20
- 聚焦AI人工智能在自动驾驶的关键技术点
AI天才研究院
计算AI大模型应用入门实战与进阶AIAgent应用开发ai
聚焦AI人工智能在自动驾驶的关键技术点关键词:自动驾驶、人工智能、感知算法、决策规划、深度学习、强化学习、多模态融合摘要:本文系统解析人工智能在自动驾驶中的核心技术体系,深度剖析环境感知、决策规划、控制执行三大核心模块的关键技术点。通过对多传感器融合算法、端到端学习架构、强化学习决策模型等前沿技术的原理阐释与代码实现,揭示AI如何解决复杂交通场景下的动态决策难题。结合实际项目案例与主流工具链,探讨
- DeepSeek自动驾驶中的多传感器融合框架(附DeepSeek行业解决方案100+)
fanxbl957
人工智能理论与实践自动驾驶人工智能机器学习
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人DeepSeek行业解决方案详解总站
- 基于 STM32 的全自动洗车监控系统设计与实现
编码追梦人
单片机项目实战stm32嵌入式硬件单片机
摘要本文提出一种基于STM32F103RCT6芯片的全自动洗车监控系统方案,通过多传感器融合与智能控制算法,实现车辆检测、洗车流程自动化及状态远程监控。系统集成硬件选型、电路设计、软件流程及通信功能,可广泛应用于智能洗车场景。一、硬件系统设计1.核心芯片选型主控制器:STM32F103RCT6(ARMCortex-M3内核,64KBSRAM,256KBFlash,48MHz主频,37个GPIO引脚
- 基于 STM32 的汽车防盗报警系统设计与实现
编码追梦人
单片机项目实战stm32汽车防盗传感器GSM短信报警系统
摘要本文设计了一种基于STM32F103C8T6单片机的汽车防盗报警系统,通过多传感器融合检测非法入侵行为,结合无线通信技术实现远程报警功能。系统分为硬件设计与软件设计两部分,硬件部分详细阐述芯片及功能模块选型与接线方案,软件部分提供流程图及核心代码实现。一、硬件系统设计1.1主控芯片选型芯片型号:STM32F103C8T6选型依据:32位Cortex-M3内核,主频72MHz,满足实时处理需求;
- 人工智能的自动驾驶新纪元:端到端智能系统挑战与前沿探索方案
数澜悠客
开悟思考与沉淀人工智能自动驾驶机器学习
一、引言:从模块化到端到端的范式革命(一)自动驾驶技术演进的三个时代自动驾驶技术自诞生以来,经历了从机械化辅助到智能化决策的漫长演进。早期,以定速巡航为代表的1.0时代,仅实现了简单的速度控制,车辆仍需驾驶员全程主导操控。随着传感器与算法发展,进入2.0时代,车辆具备了自适应巡航、车道保持等功能,通过多传感器融合与简单机器学习算法,实现部分驾驶任务自动化,但系统架构仍基于传统的“感知-决策-控制”
- 自动驾驶的“眼睛”:用Python构建智能障碍物检测系统
Echo_Wish
Python!实战!自动驾驶python人工智能
自动驾驶的“眼睛”:用Python构建智能障碍物检测系统在自动驾驶技术日益成熟的今天,障碍物检测系统成了汽车智能化不可或缺的部分。无论是高速公路上的突发状况,还是城市街道中的行人与车辆,准确识别障碍物并及时反应,是保证行车安全的关键。那么,我们如何用Python构建一个高效的障碍物检测系统呢?今天,我们从图像处理、深度学习、传感器融合几个方面入手,打造一款智能化的障碍物检测解决方案。1.自动驾驶中
- AGV智能搬运机器人:富唯智能引领工业物流高效变革
富唯智能
人工智能工业自动化上下料机器人人工智能机器人
在智能制造与工业4.0深度融合的今天,物流环节的高效与精准已成为企业核心竞争力的关键。富唯智能凭借其自主研发的AGV智能搬运机器人,以创新技术重塑工业物流标准,助力企业实现降本增效的跨越式发展。一、技术突破:精准导航与智能协同富唯智能AGV智能搬运机器人搭载激光SLAM导航技术,结合多传感器融合(3D避障相机、红外、超声波),实现±5mm的重复定位精度,无需铺设轨道即可快速部署,适应动态环境下的实
- 从像素到世界:自动驾驶视觉感知的优化与多传感器融合
赛卡
自动驾驶背后的数学自动驾驶人工智能机器学习pythonnumpyopencv深度学习
上一篇:从像素到世界:自动驾驶视觉感知的坐标变换体系一、引言在自动驾驶领域,视觉感知技术是实现环境理解的关键环节。通过摄像头获取的图像数据,系统能够识别道路、车辆、行人等物体,并为其提供决策依据。然而,从二维图像到三维世界的映射是一个复杂的过程,涉及到多个坐标系之间的转换、三维重建以及多传感器数据的融合。本文将深入探讨自动驾驶视觉感知的数学基础、工程实现以及创新优化方向,旨在为相关研究者和工程师提
- TDA4 平台SBL详解
归宿688
自动驾驶实战自动驾驶
一.简介TDA4是TI推出的一款高性能、超异构的多核SOC,拥有ARMCortex-R5F、ARMCortex-A72、C66以及C71内核,可以部署AUTOSARCP系统、HLOS(Linux或QNX)、图像处理以及深度学习等功能模块,从硬件架构来看可以分为MAIN域、MCU域和WKUP域(DMSC)。MAIN域包括2个A72核、4个R5F核、2个C66核核1个C71核,环境感知、传感器融合、智
- 相机-IMU联合标定:入门
吃水果不削皮
视觉组合导航组合导航
文章目录相机-IMU标定的核心作用1.确定传感器间的时空对齐(Spatio-TemporalCalibration2.提升多传感器融合的精度3.鲁棒性保障标定内容详解1.标定参数2.标定方法⚠️未标定或标定不准的典型问题实际应用建议总结相机-IMU标定的核心作用1.确定传感器间的时空对齐(Spatio-TemporalCalibration外参标定(ExtrinsicCalibration)计算相
- 全自动驾驶(FSD,Full Self-Driving)自动驾驶热点技术的成熟之处就是能判断道路修复修路,能自动利用类似“人眼”的摄像头进行驾驶!值得学习!
九张算数
人工智能自动驾驶学习人工智能
全自动驾驶(FSD,FullSelf-Driving)软件是自动驾驶领域中的热点技术,其核心目标是实现车辆在各种复杂交通环境下的安全、稳定、高效自动驾驶。FSD软件的技术核心涉及多个方面的交叉技术,下面将详细分析说明其主要核心技术组成:1.感知系统感知是自动驾驶的“眼睛”,其主要任务是实时采集并理解车辆周围的环境信息,主要技术包括:传感器融合(SensorFusion):结合摄像头、激光雷达(Li
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&