三扇门或者三个箱子的是否应该转换的问题

引用:http://zh.wikipedia.org/zh-tw/%E8%92%99%E6%8F%90%E9%9C%8D%E7%88%BE%E5%95%8F%E9%A1%8C---wiki中文繁体版

http://en.wikipedia.org/wiki/Monty_Hall_problem---wiki英文版

这个一个 month hall problem,即蒙提霍尔问题


蒙提霍爾問題,亦稱為蒙特霍問題三門問題(英文:Monty Hall problem),是一個源自博弈論的數學遊戲問題,大致出自美國的電視遊戲節目Let's Make a Deal。問題的名字來自該節目的主持人蒙提·霍爾(Monty Hall)。

這個遊戲的玩法是:參賽者會看見三扇關閉了的門,其中一扇的後面有一輛汽車,選中後面有車的那扇門就可以贏得該汽車,而另外兩扇門後面則各藏有一隻山羊。當參賽者選定了一扇門,但未去開啟它的時候,知道門後情形的節目主持人會開啟剩下兩扇門的其中一扇,露出其中一隻山羊。主持人其後會問參賽者要不要換另一扇仍然關上的門。問題是:換另一扇門會否增加參賽者贏得汽車的機會率?如果嚴格按照上述的條件的話,答案是—換門的話,贏得汽車的機率是2/3。

這條問題亦被叫做蒙提霍爾悖論:雖然該問題的答案在邏輯上並不自相矛盾,但十分違反直覺。這問題曾引起一陣熱烈的討論。

問題

以下是蒙提霍爾問題的一個著名的敘述,來自Craig F. Whitaker於1990年寄給《展示雜誌》(Parade Magazine)瑪麗蓮·沃斯·莎凡特(Marilyn vos Savant)專欄的信件:

假設你正在參加一個遊戲節目,你被要求在三扇門中選擇一扇:其中一扇後面有一輛車;其餘兩扇後面則是山羊。你選擇了一道門,假設是一號門,然後知道門後面有甚麼的主持人,開啟了另一扇後面有山羊的門,假設是三號門。他然後問你:「你想選擇二號門嗎?」轉換你的選擇對你來說是一種優勢嗎?

以上敘述是對Steve Selvin於1975年2月寄給American Statistician雜誌的敘述的改編版本。如上文所述,蒙提霍爾問題是遊戲節目環節的一個引申;蒙提·霍爾在節目中的確會開啟一扇錯誤的門,以增加刺激感,但不會容許玩者更改他們的選擇。如蒙提·霍爾寄給Selvin的信中所寫:

如果你上過我的節目的話,你會覺得遊戲很快—選定以後就沒有交換的機會。
—(letsmakeadeal.com)

Selvin在隨後寄給American Statistician的信件中(1975年8月)首次使用了「蒙提霍爾問題」這個名稱。

一個實質上完全相同的問題於1959年以「三囚犯問題」(three prisoners problem)的形式出現在馬丁·加德納的《數學遊戲》專欄中。葛登能版本的選擇過程敘述得十分明確,避免了《展示雜誌》版本裏隱含的前提條件。

這條問題的首次出現,可能是在1889年約瑟夫·貝特朗所著的Calcul des probabilités 一書中。 在這本書中,這條問題被稱為「貝特朗箱子悖論」(Bertrand's Box Paradox)。

Mueser和Granberg透過在主持人的行為身上加上明確的限制條件,提出了對這個問題的一種不含糊的陳述:

  • 參賽者在三扇門中挑選一扇。他並不知道內裏有甚麼。
  • 主持人知道每扇門後面有什麼。
  • 主持人必須開啓剩下的其中一扇門,並且必須提供換門的機會。
  • 主持人永遠都會挑一扇有山羊的門。
    • 如果參賽者挑了一扇有山羊的門,主持人必須挑另一扇有山羊的門。
    • 如果參賽者挑了一扇有汽車的門,主持人隨機(機率均勻分佈)在另外兩扇門中挑一扇有山羊的門。
  • 參賽者會被問是否保持他的原來選擇,還是轉而選擇剩下的那一道門。

轉換選擇可以增加參賽者的機會嗎?

解答

問題的答案是可以:當參賽者轉向另一扇門而不是繼續維持原先的選擇時,贏得汽車的機會將會加倍。

有三種可能的情況,全部都有相等的可能性(1/3):

  • 參賽者挑山羊一號,主持人挑山羊二號。轉換將贏得汽車。
  • 參賽者挑山羊二號,主持人挑山羊一號。轉換將贏得汽車。
  • 參賽者挑汽車,主持人挑兩頭山羊的任何一頭。轉換將失敗。

在頭兩種情況,參賽者可以透過轉換選擇而贏得汽車。第三種情況是唯一一種參賽者透過保持原來選擇而贏的情況。因為三種情況中有兩種是透過轉換選擇而贏的,所以透過轉換選擇而贏的機率是2/3。

如果沒有最初選擇,或者如果主持人隨便打開一扇門(可能主持人會直接開到汽車門,導致遊戲結束),又或者如果主持人只會在參賽者作出特定選擇某一門時才會問是否轉換選擇的話,問題都將會變得不一樣。例如,如果主持人先從兩隻山羊中剔除其中一隻,然後才叫參賽者作出選擇的話,選中的機會將會是1/2。

還可以用逆向思維的方式來理解這個選擇。無論參賽者開始的選擇如何,在被主持人問到是否更換時都選擇更換。如果參賽者先選中山羊,換之後百分之百贏;如果參賽者先選中汽車,換之後百分之百輸。而選中山羊的機率是2/3,選中汽車的機率是1/3。所以不管怎樣都換,相對最初的贏得汽車僅為1/3的機率來說,轉換選擇可以增加贏的機會。


你可能感兴趣的:(math)