我的CUDA学习之旅1——大图像分块处理程序(包括求均值,最大值等)

引言

在我的第一篇文章中我简单介绍了CUDA以及我的一些个人学习见解,在本文中我将开始正式开始CUDA实践之旅,众做周知CUDA目前应用的领域十分广泛,它能把一些普通的CPU代码提速几十倍甚至几百倍。在本人所从事的图像处理领域,在一些大图像的处理上(4K以上图像),仅仅依靠CPU进行计算已经完全无法满足工程项目所要求的运行时间,这时候我们就需要利用CUDA对代码进行加速。本文以一个8000*1000图像为例,进行代码实践。

任务要求

将一个8000*1000的单通道图分割为40x40 (可调整)的块, 计算每个块内的像素值的和、最大 、最小、均值,将计算结果保存在CPU端。

实现思路

由于我的本本的显卡最大支持的thread数为1024,而任务中40*40的数量显然已经超过了1024,故在计算任务的分配上,我综合考虑后选择了通过两次运算(每次计算数为40*20)来完成,运用共享内存保存每个块中传入图像的像素数据,最后利用归约算法对加法进行优化。

实现环境

VS2013 + CUDA7.5 + Opencv2.4.13

我的CUDA学习之旅1——大图像分块处理程序(包括求均值,最大值等)_第1张图片

实现代码

1)8000*1000实验图像获取

我用了一段简单的Matlab代码来获取实验图像,代码如下:

img = uint8(zeros(8000,1000));
for i=1:8000
    for j=1:1000
        img(i,j) = uint8(255*rand(1));
    end
end
imwrite(img,'test.jpg')

该程序的目的在于产生一个随机产生0-255值的灰度图像,大小为8000*1000,作为我们的实验图像。

(2)CPU代码实现

我先使用Opencv的方式在CPU端实现了任务,得到了计算结果(方便与GPU实现相比较,同时也可验证CUDA代码的准确性),具体的代码如下:

#include 
#include 
#include 
using namespace std;
using namespace cv;

int operateMat(Mat img, int startx, int starty, int size, int thresh);

int main()
{
    Mat img = imread("test.jpg",0);
    int size = 40;
    int thresh = 0;
    cout << "Plaese Input Size:";
    cin >> size;   //分块区域大小
    cout << "Plaese Input Thresh value:";
    cin >> thresh; //阈值
    double time0 = static_cast<double>(getTickCount()); //计时器开始
    int row = img.rows;
    int col = img.cols;
    int length = row / size;
    int width = col / size;
    int sumResult[10000];     //区域内求和结果
    int averageResult[10000]; //区域内均值结果
    int maxResult[10000]; //区域内最大值结果
    int minResult[10000]; //区域内最小值结果
    int threshNumber[10000];  //区域内阈值结果

    int count = 0;
    int x = 0;

    for (int i = 0; i < length; i++)
    {
        for (int j = 0; j < width; j++)
        {
            sumResult[count], maxResult[count], minResult[count], threshNumber[count]  = operateMat(img, i*size, j*size, size, 35);
            averageResult[count] = sumResult[count] / (size * size);
            count += 1;
        }
    }
    time0 = ((double)getTickCount() - time0) / getTickFrequency(); //计时器结束
    cout << time0 << "s" << endl; //输出运行时间
    system("Pause");
    return 0;
}

int operateMat(Mat img, int startx, int starty, int size, int thresh)
{
    int sum = 0;
    int max = 0;
    int min = 255;
    int average = 0;
    int threshCount = 0;
    for (int i = startx; i < startx + size; i++)
    {
        uchar *data = img.ptr(i);
        for (int j = starty; j < starty + size; j++)
        {
            sum += data[j];
            if (max < data[j])
            {
                max = data[j];
            }
            if (min > data[j])
            {
                min = data[j];
            }
            if (data[j] > thresh)
            {
                threshCount += 1;
            }
        }
    }
    average = sum / (size*size);
    return sum, max, min, threshCount;
}

(3)CUDA代码
在CUDA实现上,本程序利用了每个块独有的共享内存,将需要计算的40*40的小块中所有的像素数据通过两次导入的方式(每次导入40*20)全部赋值给大小为1600的共享内存,接着通过规约算法优化运算即可得到所需结果。

#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include 
#include 
#include 
#include 
using namespace std;
using namespace cv;

__global__ void matSum(uchar *dataIn, int *dataOutSum, int *dataOutMax, int *dataOutMin, int imgHeight, int imgWidth)
{
    //__shared__ int _data[1600];
    const int number = 2048;

    extern __shared__ int _sum[];  //小图像块中求和共享数组
    __shared__ int _max[number];  //小图像块中求最大值共享数组
    __shared__ int _min[number];  //小图像块中求最小值共享数组

    int thread = threadIdx.x + threadIdx.y * blockDim.x; //一个block中所有thread的索引值
    int threadIndex = threadIdx.x + threadIdx.y * imgWidth; //每个小块中存放数据的thread索引值
    //每个小块中存放数据的block索引值
    int blockIndex1 = blockIdx.x * blockDim.x + 2 * blockIdx.y * blockDim.y * imgWidth; //40*20的上半block索引值
    int blockIndex2 = blockIdx.x * blockDim.x + (2 * blockIdx.y + 1) * blockDim.y * imgWidth; //40*20的下半block索引值

    int index1 = threadIndex + blockIndex1; //每个block中上半部分索引值
    int index2 = threadIndex + blockIndex2; //每个block中下半部分索引值

    //将待计算的40*40小图像块中的所有像素值分两次传送到共享数组中
    _sum[thread] = dataIn[index1]; //将上半部分的40*20中所有数据赋值到共享数组中
    _sum[thread + blockDim.x * blockDim.y] = dataIn[index2]; //将下半部分的40*20中所有数据赋值到共享数组中

    _max[thread] = dataIn[index1];
    _max[thread + blockDim.x * blockDim.y] = dataIn[index2];

    _min[thread] = dataIn[index1];
    _min[thread + blockDim.x * blockDim.y] = dataIn[index2];

    //memcpy(_sum, _data, 1600 * sizeof(int));
    //memcpy(_max, _data, 1600 * sizeof(int));
    //memcpy(_min, _data, 1600 * sizeof(int));  在GPU(Device)中用memcpy函数进行拷贝会导致显卡混乱,故不选择此种方式

    //利用归约算法求出40*40小图像块中1600个像素值中的和、最大值以及最小值
    for (unsigned int s = number / 2; s > 0; s >>= 1)
    {
        if (thread < s)
        { 
            _sum[thread] += _sum[thread + s]; 
            if (_max[thread] < _max[thread + s]) { _max[thread] = _max[thread + s]; }
            if (_min[thread] > _min[thread + s]) { _min[thread] = _min[thread + s]; }
        }
        __syncthreads(); //所有线程同步
    }
    if (threadIndex == 0) 
    { 
        //将每个小块中的结果储存到输出中
        dataOutSum[blockIdx.x + blockIdx.y * gridDim.x] = _sum[0]; 
        dataOutMax[blockIdx.x + blockIdx.y * gridDim.x] = _max[0];
        dataOutMin[blockIdx.x + blockIdx.y * gridDim.x] = _min[0];
    }

}

int main()
{
    Mat image = imread("test.jpg", 0); //读取待检测图片
    int sum[5000]; //求和结果数组
    int max[5000]; //最大值结果数组
    int min[5000]; //最小值结果数组
    imshow("src", image);

    size_t memSize = image.cols*image.rows*sizeof(uchar);
    int size = 5000 * sizeof(int);

    uchar *d_src = NULL;
    int *d_sum = NULL;
    int *d_max = NULL;
    int *d_min = NULL;

    cudaMalloc((void**)&d_src, memSize);
    cudaMalloc((void**)&d_sum, size);
    cudaMalloc((void**)&d_max, size);
    cudaMalloc((void**)&d_min, size);

    cudaMemcpy(d_src, image.data, memSize, cudaMemcpyHostToDevice);


    int imgWidth = image.cols;
    int imgHeight = image.rows;

    dim3 threadsPerBlock(40, 20); //每个block大小为40*20
    dim3 blockPerGrid(25, 200); //将8000*1000的图片分为25*200个小图像块

    double time0 = static_cast<double>(getTickCount()); //计时器开始

    matSum << 4096 * sizeof(int) >> >(d_src, d_sum, d_max, d_min, imgHeight, imgWidth);

    time0 = ((double)getTickCount() - time0) / getTickFrequency(); //计时器结束
    cout << "The Run Time is :" << time0 << "s" << endl; //输出运行时间

    cudaMemcpy(sum, d_sum, size, cudaMemcpyDeviceToHost);
    cudaMemcpy(max, d_max, size, cudaMemcpyDeviceToHost);
    cudaMemcpy(min, d_min, size, cudaMemcpyDeviceToHost);

    cout << "The sum is :" << sum[0] << endl;
    cout << "The max is :" << max[0] << endl;
    cout << "The min is :" << min[0] << endl;

    waitKey(0);

    cudaFree(d_src);
    cudaFree(d_sum);
    cudaFree(d_max);
    cudaFree(d_min);

    return 0;
}

(4)运算结果比对

CPU与GPU代码运算结果一致,在性能上CPU端代码耗时约0.1S,GPU端代码为0.2ms,加速500倍~

你可能感兴趣的:(cuda编程,cuda程序,图像处理)