有志不在年高,罗成少年统兵马。
得道何须深山,老君立地晓阴阳
阻塞和非阻塞 IO 是 Linux 驱动开发里面很常见的两种设备访问模式。需要强调的是,这里的 IO 指的是 Input/Output,也就是输入/输出,是应用程序对驱动设备的输入/输出操作。应用程序对设备驱动进行操作的时候,如果不能获取到设备资源时,阻塞IO和非阻塞IO动作是不同的,具体动作如下所示:
open("/dev/xxx_dev", O_RDWR); /* 阻塞方式打开 */
open("/dev/xxx_dev", O_RDWR | O_NONBLOCK); /* 非阻塞方式打开 */
阻塞访问最大的好处就是当设备文件不可操作的时候进程可以进入休眠态,这样可以将CPU 资源让出来。但是,当设备文件可以操作的时候就必须唤醒进程,一般在中断函数里面完成唤醒工作。Linux 内核提供了等待队列(wait queue)来实现阻塞进程的唤醒工作。
如果我们要在驱动中使用等待队列,必须创建并初始化一个等待队列头,等待队列头使用结构体 wait_queue_head_t
定义。定义好等待队列头以后需要初始化, 使用 init_waitqueue_head
函数初始化等待队列头。
当然了,也可以使用宏
DECLARE_WAIT_QUEUE_HEAD
来一次性完成等待队列头的定义的初始化。
等待队列头就是一个等待队列的头部,每个访问设备的进程都是一个队列项,当设备不可用的时候就要将这些进程对应的等待队列项添加到等待队列里面。使用结构体 wait_queue_t
定义等待队列项,然后使用 init_waitqueue_head
函数初始化等待队列头
使用宏
DECLARE_WAITQUEUE(name, tsk)
定义并初始化一个等待队列项。
其中,name 就是等待队列项的名字, tsk 表示这个等待队列项属于哪个任务(进程),,一般设置为current , 在 Linux 内 核 中 current 相 当 于 一 个 全 局 变 量 , 表 示 当 前 进 程 。 因 此 宏DECLARE_WAITQUEUE 就是给当前正在运行的进程创建并初始化了一个等待队列项。
当设备不可访问的时候就需要将进程对应的等待队列项添加到前面创建的等待队列头中,只有添加到等待队列头中以后进程才能进入休眠态。当设备可以访问以后再将进程对应的等待队列项从等待队列头中移除即可,等待队列项添加/移除 API 函数如下:
//q: 等待队列项要加入的等待队列头,wait:要加入的等待队列项。
void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
当设备可以使用的时候就要唤醒进入休眠态的进程,唤醒可以使用如下两个函数,这两个函数会将这个等待队列头中的所有进程都唤醒。wake_up 函数可以唤醒处于 TASK_INTERRUPTIBLE
和TASK_UNINTERRUPTIBLE
状态的进程,而 wake_up_interruptible 函数只能唤醒处于TASK_INTERRUPTIBLE
状态的进程。
//参数 q 就是要唤醒的等待队列头
void wake_up(wait_queue_head_t *q)
void wake_up_interruptible(wait_queue_head_t *q)
除了等待唤醒以外,也可以设置等待队列等待某个事件,当这个事件满足以后就自动唤醒等待队列中的进程。
函数 | 描述 |
---|---|
wait_event(wq, condition) | 等待以 wq 为等待队列头的等待队列被唤醒,前提是 condition 条件必须满足(为真),否则一直阻塞 。 此 函 数 会 将 进 程 设 置 为TASK_UNINTERRUPTIBLE 状态 |
wait_event_timeout(wq, condition, timeout) | 功能和 wait_event 类似,但是此函数可以添加超时时间,以 jiffies 为单位。此函数有返回值,如果返回 0 的话表示超时时间到,而且 condition为假。为 1 的话表示 condition 为真,也就是条件满足了。 |
wait_event_interruptible(wq, condition) | 与 wait_event 函数类似,但是此函数将进程设置为 TASK_INTERRUPTIBLE,就是可以被信号打断。 |
wait_event_interruptible_timeout(wq,condition, timeout) | 与 wait_event_timeout 函数类似,此函数也将进程设置为 TASK_INTERRUPTIBLE,可以被信号打断。 |
如果用户应用程序以非阻塞的方式访问设备,设备驱动程序就要提供非阻塞的处理方式,也就是轮询。poll、 epoll 和 select 可以用于处理轮询,应用程序通过 select、 epoll 或 poll 函数来查询设备是否可以操作,如果可以操作的话就从设备读取或者向设备写入数据。当应用程序调用 select、 epoll 或 poll 函数的时候设备驱动程序中的 poll 函数就会执行,因此**需要在设备驱动程序中编写 poll 函数。**我们先来看一下应用程序中使用的 select、 poll 和 epoll 这三个函数。
函数原型:
int select(int nfds,
fd_set *readfds,
fd_set *writefds,
fd_set *exceptfds,
struct timeval *timeout)
nfds
readfds、 writefds 和 exceptfds
timeout
struct timeval {
long tv_sec; /* 秒 */
long tv_usec; /* 微妙 */
};
select返回值
fd_set
void FD_ZERO(fd_set *set)
void FD_SET(int fd, fd_set *set)
void FD_CLR(int fd, fd_set *set)
int FD_ISSET(int fd, fd_set *set)
select 函数读非阻塞访问示例
void main(void)
{
int ret, fd; /* 要监视的文件描述符 */
fd_set readfds; /* 读操作文件描述符集 */
struct timeval timeout; /* 超时结构体 */
fd = open("dev_xxx", O_RDWR | O_NONBLOCK); /* 非阻塞式访问 */
FD_ZERO(&readfds); /* 清除 readfds */
FD_SET(fd, &readfds); /* 将 fd 添加到 readfds 里面 */
/* 构造超时时间 */
timeout.tv_sec = 0;
timeout.tv_usec = 500000; /* 500ms */
ret = select(fd + 1, &readfds, NULL, NULL, &timeout);//1个文件描述符,只检测读变化
switch (ret) {
case 0: /* 超时 */
printf("timeout!\r\n");
break;
case -1: /* 错误 */
printf("error!\r\n");
break;
default: /* 可以读取数据 */
if(FD_ISSET(fd, &readfds)) { /* 判断是否为 fd 文件描述符 */
/* 使用 read 函数读取数据 */
}
break;
}
}
在单个线程中, select 函数能够监视的文件描述符数量有最大的限制,一般为 1024,可以修改内核将监视的文件描述符数量改大,但是这样会降低效率!这个时候就可以使用 poll 函数,poll 函数本质上和 select 没有太大的差别,但是 poll 函数没有最大文件描述符限制, Linux 应用程序中 poll 函数原型如下所示:
int poll(struct pollfd *fds,
nfds_t nfds,
int timeout)
fds
struct pollfd {
int fd; /* 文件描述符 */
short events; /* 请求的事件 */
short revents; /* 返回的事件 */
};
事件类型 | 描述 |
---|---|
POLLIN | 有数据可以读取。 |
POLLPRI | 有紧急的数据需要读取。 |
POLLOUT | 可以写数据。 |
POLLERR | 指定的文件描述符发生错误。 |
POLLHUP | 指定的文件描述符挂起。 |
POLLNVAL | 无效的请求。 |
POLLRDNORM | 等同于 POLLIN |
nfds
timeout
poll返回值
poll 函数读非阻塞访问示例
void main(void)
{
int ret;
int fd; /* 要监视的文件描述符 */
struct pollfd fds;
fd = open(filename, O_RDWR | O_NONBLOCK); /* 非阻塞式访问 */
/* 构造结构体 */
fds.fd = fd;
fds.events = POLLIN; /* 监视数据是否可以读取 */
ret = poll(&fds, 1, 500); /* 轮询文件是否可操作,超时 500ms */
if (ret) { /* 数据有效 */
......
/* 读取数据 */
......
} else if (ret == 0) { /* 超时 */
......
} else if (ret < 0) { /* 错误 */
......
}
}
传统的 selcet 和 poll 函数都会随着所监听的 fd 数量的增加,出现效率低下的问题,而且poll 函数每次必须遍历所有的描述符来检查就绪的描述符,这个过程很浪费时间。为此, epoll因运而生, epoll 就是为处理大并发而准备的,一般常常在网络编程中使用 epoll 函数。
使用流程:epoll_create -> epoll_ctl -> epoll_wait
应用程序需要先使用 epoll_create 函数创建一个 epoll 句柄, epoll_create 函数原型如下:
int epoll_create(int size)
size
poll 句柄创建成功以后使用 epoll_ctl 函数向其中添加要监视的文件描述符以及监视的事件, epoll_ctl 函数原型如下所示:
int epoll_ctl(int epfd,
int op,
int fd,
struct epoll_event *event)
epfd
op
参数 | 含义 |
---|---|
EPOLL_CTL_ADD | 向 epfd 添加文件参数 fd 表示的描述符。 |
EPOLL_CTL_MOD | 修改参数 fd 的 event 事件。 |
EPOLL_CTL_DEL | 从 epfd 中删除 fd 描述符。 |
fd
event
struct epoll_event {
uint32_t events; /* epoll 事件 */
epoll_data_t data; /* 用户数据 */
};
参数 | 含义 |
---|---|
EPOLLIN | 有数据可以读取。 |
EPOLLOUT | 可以写数据。 |
EPOLLPRI | 有紧急的数据需要读取。 |
EPOLLERR | 指定的文件描述符发生错误。 |
EPOLLHUP | 指定的文件描述符挂起。 |
EPOLLET | 设置 epoll 为边沿触发,默认触发模式为水平触发。 |
EPOLLONESHOT | 一次性的监视,当监视完成以后还需要再次监视某个 fd,那么就需要将fd 重新添加到 epoll 里面。 |
epoll返回值
一切都设置好以后应用程序就可以通过 epoll_wait 函数来等待事件的发生,类似 select 函数。 epoll_wait 函数原型如下所示:
int epoll_wait(int epfd,
struct epoll_event *events,
int maxevents,
int timeout)
epfd
events
maxevents
timeout
返回值
epoll 更多的是用在大规模的并发服务器上,因为在这种场合下 select 和 poll 并不适合。当设计到的文件描述符(fd)比较少的时候就适合用 selcet 和 poll,初学先了解select和poll函数即可!
当应用程序调用 select 或 poll 函数来对驱动程序进行非阻塞访问的时候,驱动程序file_operations 操作集中的 poll 函数就会执行。所以驱动程序的编写者需要提供对应的 poll 函数。poll 函数原型如下所示:
unsigned int (*poll) (struct file *filp, struct poll_table_struct *wait)
filp
wait
返回值
参数 | 描述符 |
---|---|
POLLIN | 有数据可以读取。 |
POLLPRI | 有紧急的数据需要读取。 |
POLLOUT | 可以写数据。 |
POLLERR | 指定的文件描述符发生错误。 |
POLLHUP | 指定的文件描述符挂起。 |
POLLNVAL | 无效的请求。 |
POLLRDNORM | 等同于 POLLIN,普通数据可读 |
在上一节第一个按键实验中,我们直接在应用程序中通过 read 函数不断的读取按键状态,当按键有效的时候就打印出按键值。这种方法有个缺点,那就是 imx6uirqApp 这个测试应用程序拥有高达99.6% CPU 占用率。
原因就在于我们是直接在 while 循环中通过 read 函数读取按键值,因此 imx6uirqApp 这个软件会一直运行,一直读取按键值, CPU 使用率肯定就会很高。最好的方法就是在没有有效的按键事件发生的时候,imx6uirqApp 这个应用程序应该处于休眠状态,当有按键事件发生以后 imx6uirqApp 这个应用程序才运行,打印出按键值,这样就会降低 CPU 使用率,本小节我们就使用阻塞 IO 来实现此功能。
驱动程序
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
/***************************************************************
Copyright © ALIENTEK Co., Ltd. 1998-2029. All rights reserved.
文件名 : block.c
作者 : 左忠凯
版本 : V1.0
描述 : 阻塞IO访问
其他 : 无
论坛 : www.openedv.com
日志 : 初版V1.0 2019/7/26 左忠凯创建
***************************************************************/
#define IMX6UIRQ_CNT 1 /* 设备号个数 */
#define IMX6UIRQ_NAME "blockio" /* 名字 */
#define KEY0VALUE 0X01 /* KEY0按键值 */
#define INVAKEY 0XFF /* 无效的按键值 */
#define KEY_NUM 1 /* 按键数量 */
/* 中断IO描述结构体 */
struct irq_keydesc {
int gpio; /* gpio */
int irqnum; /* 中断号 */
unsigned char value; /* 按键对应的键值 */
char name[10]; /* 名字 */
irqreturn_t (*handler)(int, void *); /* 中断服务函数 */
};
/* imx6uirq设备结构体 */
struct imx6uirq_dev{
dev_t devid; /* 设备号 */
struct cdev cdev; /* cdev */
struct class *class; /* 类 */
struct device *device; /* 设备 */
int major; /* 主设备号 */
int minor; /* 次设备号 */
struct device_node *nd; /* 设备节点 */
atomic_t keyvalue; /* 有效的按键键值 */
atomic_t releasekey; /* 标记是否完成一次完成的按键,包括按下和释放 */
struct timer_list timer;/* 定义一个定时器*/
struct irq_keydesc irqkeydesc[KEY_NUM]; /* 按键init述数组 */
unsigned char curkeynum; /* 当前init按键号 */
wait_queue_head_t r_wait; /* 读等待队列头 */
};
struct imx6uirq_dev imx6uirq; /* irq设备 */
/* @description : 中断服务函数,开启定时器
* 定时器用于按键消抖。
* @param - irq : 中断号
* @param - dev_id : 设备结构。
* @return : 中断执行结果
*/
static irqreturn_t key0_handler(int irq, void *dev_id)
{
struct imx6uirq_dev *dev = (struct imx6uirq_dev*)dev_id;
dev->curkeynum = 0;
dev->timer.data = (volatile long)dev_id;
mod_timer(&dev->timer, jiffies + msecs_to_jiffies(10)); /* 10ms定时 */
return IRQ_RETVAL(IRQ_HANDLED);
}
/* @description : 定时器服务函数,用于按键消抖,定时器到了以后
* 再次读取按键值,如果按键还是处于按下状态就表示按键有效。
* @param - arg : 设备结构变量
* @return : 无
*/
void timer_function(unsigned long arg)
{
unsigned char value;
unsigned char num;
struct irq_keydesc *keydesc;
struct imx6uirq_dev *dev = (struct imx6uirq_dev *)arg;
num = dev->curkeynum;
keydesc = &dev->irqkeydesc[num];
value = gpio_get_value(keydesc->gpio); /* 读取IO值 */
if(value == 0){ /* 按下按键 */
atomic_set(&dev->keyvalue, keydesc->value);
}
else{ /* 按键松开 */
atomic_set(&dev->keyvalue, 0x80 | keydesc->value);
atomic_set(&dev->releasekey, 1); /* 标记松开按键,即完成一次完整的按键过程 */
}
/* 唤醒进程 */
if(atomic_read(&dev->releasekey)) { /* 完成一次按键过程 */
/* wake_up(&dev->r_wait); */
wake_up_interruptible(&dev->r_wait);
}
}
/*
* @description : 按键IO初始化
* @param : 无
* @return : 无
*/
static int keyio_init(void)
{
unsigned char i = 0;
char name[10];
int ret = 0;
imx6uirq.nd = of_find_node_by_path("/key");
if (imx6uirq.nd== NULL){
printk("key node not find!\r\n");
return -EINVAL;
}
/* 提取GPIO */
for (i = 0; i < KEY_NUM; i++) {
imx6uirq.irqkeydesc[i].gpio = of_get_named_gpio(imx6uirq.nd ,"key-gpio", i);
if (imx6uirq.irqkeydesc[i].gpio < 0) {
printk("can't get key%d\r\n", i);
}
}
/* 初始化key所使用的IO,并且设置成中断模式 */
for (i = 0; i < KEY_NUM; i++) {
memset(imx6uirq.irqkeydesc[i].name, 0, sizeof(name)); /* 缓冲区清零 */
sprintf(imx6uirq.irqkeydesc[i].name, "KEY%d", i); /* 组合名字 */
gpio_request(imx6uirq.irqkeydesc[i].gpio, name);
gpio_direction_input(imx6uirq.irqkeydesc[i].gpio);
imx6uirq.irqkeydesc[i].irqnum = irq_of_parse_and_map(imx6uirq.nd, i);
#if 0
imx6uirq.irqkeydesc[i].irqnum = gpio_to_irq(imx6uirq.irqkeydesc[i].gpio);
#endif
}
/* 申请中断 */
imx6uirq.irqkeydesc[0].handler = key0_handler;
imx6uirq.irqkeydesc[0].value = KEY0VALUE;
for (i = 0; i < KEY_NUM; i++) {
ret = request_irq(imx6uirq.irqkeydesc[i].irqnum, imx6uirq.irqkeydesc[i].handler,
IRQF_TRIGGER_FALLING|IRQF_TRIGGER_RISING, imx6uirq.irqkeydesc[i].name, &imx6uirq);
if(ret < 0){
printk("irq %d request failed!\r\n", imx6uirq.irqkeydesc[i].irqnum);
return -EFAULT;
}
}
/* 创建定时器 */
init_timer(&imx6uirq.timer);
imx6uirq.timer.function = timer_function;
/* 初始化等待队列头 */
init_waitqueue_head(&imx6uirq.r_wait);
return 0;
}
/*
* @description : 打开设备
* @param - inode : 传递给驱动的inode
* @param - filp : 设备文件,file结构体有个叫做private_data的成员变量
* 一般在open的时候将private_data指向设备结构体。
* @return : 0 成功;其他 失败
*/
static int imx6uirq_open(struct inode *inode, struct file *filp)
{
filp->private_data = &imx6uirq; /* 设置私有数据 */
return 0;
}
/*
* @description : 从设备读取数据
* @param - filp : 要打开的设备文件(文件描述符)
* @param - buf : 返回给用户空间的数据缓冲区
* @param - cnt : 要读取的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 读取的字节数,如果为负值,表示读取失败
*/
static ssize_t imx6uirq_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
int ret = 0;
unsigned char keyvalue = 0;
unsigned char releasekey = 0;
struct imx6uirq_dev *dev = (struct imx6uirq_dev *)filp->private_data;
#if 0
/* 加入等待队列,等待被唤醒,也就是有按键按下 */
ret = wait_event_interruptible(dev->r_wait, atomic_read(&dev->releasekey));
if (ret) {
goto wait_error;
}
#endif
DECLARE_WAITQUEUE(wait, current); /* 给当前正在运行的进程创建并初始化一个等待队列项 */
if(atomic_read(&dev->releasekey) == 0) { /* 没有按键按下 */
add_wait_queue(&dev->r_wait, &wait); /* 将等待队列项添加到等待队列头,因为只有添加到等待队列头才会进入休眠! */
__set_current_state(TASK_INTERRUPTIBLE);/* 设置任务状态,可以被信号打断! */
schedule(); /* 进行一次任务切换!!! */
if(signal_pending(current)) { /* 判断是否为信号引起的唤醒 */
ret = -ERESTARTSYS;
goto wait_error;
}
}
remove_wait_queue(&dev->r_wait, &wait); /* 唤醒以后将等待队列移除 */
keyvalue = atomic_read(&dev->keyvalue);
releasekey = atomic_read(&dev->releasekey);
if (releasekey) { /* 有按键按下 */
if (keyvalue & 0x80) {
keyvalue &= ~0x80;
ret = copy_to_user(buf, &keyvalue, sizeof(keyvalue));
} else {
goto data_error;
}
atomic_set(&dev->releasekey, 0);/* 按下标志清零 */
} else {
goto data_error;
}
return 0;
wait_error:
set_current_state(TASK_RUNNING); /* 设置任务为运行态 */
remove_wait_queue(&dev->r_wait, &wait); /* 将等待队列移除 */
return ret;
data_error:
return -EINVAL;
}
/* 设备操作函数 */
static struct file_operations imx6uirq_fops = {
.owner = THIS_MODULE,
.open = imx6uirq_open,
.read = imx6uirq_read,
};
/*
* @description : 驱动入口函数
* @param : 无
* @return : 无
*/
static int __init imx6uirq_init(void)
{
/* 1、构建设备号 */
if (imx6uirq.major) {
imx6uirq.devid = MKDEV(imx6uirq.major, 0);
register_chrdev_region(imx6uirq.devid, IMX6UIRQ_CNT, IMX6UIRQ_NAME);
} else {
alloc_chrdev_region(&imx6uirq.devid, 0, IMX6UIRQ_CNT, IMX6UIRQ_NAME);
imx6uirq.major = MAJOR(imx6uirq.devid);
imx6uirq.minor = MINOR(imx6uirq.devid);
}
/* 2、注册字符设备 */
cdev_init(&imx6uirq.cdev, &imx6uirq_fops);
cdev_add(&imx6uirq.cdev, imx6uirq.devid, IMX6UIRQ_CNT);
/* 3、创建类 */
imx6uirq.class = class_create(THIS_MODULE, IMX6UIRQ_NAME);
if (IS_ERR(imx6uirq.class)) {
return PTR_ERR(imx6uirq.class);
}
/* 4、创建设备 */
imx6uirq.device = device_create(imx6uirq.class, NULL, imx6uirq.devid, NULL, IMX6UIRQ_NAME);
if (IS_ERR(imx6uirq.device)) {
return PTR_ERR(imx6uirq.device);
}
/* 5、始化按键 */
atomic_set(&imx6uirq.keyvalue, INVAKEY);
atomic_set(&imx6uirq.releasekey, 0);
keyio_init();
return 0;
}
/*
* @description : 驱动出口函数
* @param : 无
* @return : 无
*/
static void __exit imx6uirq_exit(void)
{
unsigned i = 0;
/* 删除定时器 */
del_timer_sync(&imx6uirq.timer); /* 删除定时器 */
/* 释放中断 */
for (i = 0; i < KEY_NUM; i++) {
free_irq(imx6uirq.irqkeydesc[i].irqnum, &imx6uirq);
}
cdev_del(&imx6uirq.cdev);
unregister_chrdev_region(imx6uirq.devid, IMX6UIRQ_CNT);
device_destroy(imx6uirq.class, imx6uirq.devid);
class_destroy(imx6uirq.class);
}
module_init(imx6uirq_init);
module_exit(imx6uirq_exit);
MODULE_LICENSE("GPL");
应用程序
同第一次按键
需要说明的
1、几个函数
__set_current_state 函数
schedule 函数
signal_pending 函数
2、使用等待队列实现阻塞访问重点注意两点:
驱动程序
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
/***************************************************************
Copyright © ALIENTEK Co., Ltd. 1998-2029. All rights reserved.
文件名 : noblock.c
作者 : 左忠凯
版本 : V1.0
描述 : 非阻塞IO访问
其他 : 无
论坛 : www.openedv.com
日志 : 初版V1.0 2019/7/26 左忠凯创建
***************************************************************/
#define IMX6UIRQ_CNT 1 /* 设备号个数 */
#define IMX6UIRQ_NAME "noblockio" /* 名字 */
#define KEY0VALUE 0X01 /* KEY0按键值 */
#define INVAKEY 0XFF /* 无效的按键值 */
#define KEY_NUM 1 /* 按键数量 */
/* 中断IO描述结构体 */
struct irq_keydesc {
int gpio; /* gpio */
int irqnum; /* 中断号 */
unsigned char value; /* 按键对应的键值 */
char name[10]; /* 名字 */
irqreturn_t (*handler)(int, void *); /* 中断服务函数 */
};
/* imx6uirq设备结构体 */
struct imx6uirq_dev{
dev_t devid; /* 设备号 */
struct cdev cdev; /* cdev */
struct class *class; /* 类 */
struct device *device; /* 设备 */
int major; /* 主设备号 */
int minor; /* 次设备号 */
struct device_node *nd; /* 设备节点 */
atomic_t keyvalue; /* 有效的按键键值 */
atomic_t releasekey; /* 标记是否完成一次完成的按键,包括按下和释放 */
struct timer_list timer;/* 定义一个定时器*/
struct irq_keydesc irqkeydesc[KEY_NUM]; /* 按键init述数组 */
unsigned char curkeynum; /* 当前init按键号 */
wait_queue_head_t r_wait; /* 读等待队列头 */
};
struct imx6uirq_dev imx6uirq; /* irq设备 */
/* @description : 中断服务函数,开启定时器
* 定时器用于按键消抖。
* @param - irq : 中断号
* @param - dev_id : 设备结构。
* @return : 中断执行结果
*/
static irqreturn_t key0_handler(int irq, void *dev_id)
{
struct imx6uirq_dev *dev = (struct imx6uirq_dev*)dev_id;
dev->curkeynum = 0;
dev->timer.data = (volatile long)dev_id;
mod_timer(&dev->timer, jiffies + msecs_to_jiffies(10)); /* 10ms定时 */
return IRQ_RETVAL(IRQ_HANDLED);
}
/* @description : 定时器服务函数,用于按键消抖,定时器到了以后
* 再次读取按键值,如果按键还是处于按下状态就表示按键有效。
* @param - arg : 设备结构变量
* @return : 无
*/
void timer_function(unsigned long arg)
{
unsigned char value;
unsigned char num;
struct irq_keydesc *keydesc;
struct imx6uirq_dev *dev = (struct imx6uirq_dev *)arg;
num = dev->curkeynum;
keydesc = &dev->irqkeydesc[num];
value = gpio_get_value(keydesc->gpio); /* 读取IO值 */
if(value == 0){ /* 按下按键 */
atomic_set(&dev->keyvalue, keydesc->value);
}
else{ /* 按键松开 */
atomic_set(&dev->keyvalue, 0x80 | keydesc->value);
atomic_set(&dev->releasekey, 1); /* 标记松开按键,即完成一次完整的按键过程 */
}
/* 唤醒进程 */
if(atomic_read(&dev->releasekey)) { /* 完成一次按键过程 */
/* wake_up(&dev->r_wait); */
wake_up_interruptible(&dev->r_wait);
}
}
/*
* @description : 按键IO初始化
* @param : 无
* @return : 无
*/
static int keyio_init(void)
{
unsigned char i = 0;
char name[10];
int ret = 0;
imx6uirq.nd = of_find_node_by_path("/key");
if (imx6uirq.nd== NULL){
printk("key node not find!\r\n");
return -EINVAL;
}
/* 提取GPIO */
for (i = 0; i < KEY_NUM; i++) {
imx6uirq.irqkeydesc[i].gpio = of_get_named_gpio(imx6uirq.nd ,"key-gpio", i);
if (imx6uirq.irqkeydesc[i].gpio < 0) {
printk("can't get key%d\r\n", i);
}
}
/* 初始化key所使用的IO,并且设置成中断模式 */
for (i = 0; i < KEY_NUM; i++) {
memset(imx6uirq.irqkeydesc[i].name, 0, sizeof(name)); /* 缓冲区清零 */
sprintf(imx6uirq.irqkeydesc[i].name, "KEY%d", i); /* 组合名字 */
gpio_request(imx6uirq.irqkeydesc[i].gpio, name);
gpio_direction_input(imx6uirq.irqkeydesc[i].gpio);
imx6uirq.irqkeydesc[i].irqnum = irq_of_parse_and_map(imx6uirq.nd, i);
#if 0
imx6uirq.irqkeydesc[i].irqnum = gpio_to_irq(imx6uirq.irqkeydesc[i].gpio);
#endif
}
/* 申请中断 */
imx6uirq.irqkeydesc[0].handler = key0_handler;
imx6uirq.irqkeydesc[0].value = KEY0VALUE;
for (i = 0; i < KEY_NUM; i++) {
ret = request_irq(imx6uirq.irqkeydesc[i].irqnum, imx6uirq.irqkeydesc[i].handler,
IRQF_TRIGGER_FALLING|IRQF_TRIGGER_RISING, imx6uirq.irqkeydesc[i].name, &imx6uirq);
if(ret < 0){
printk("irq %d request failed!\r\n", imx6uirq.irqkeydesc[i].irqnum);
return -EFAULT;
}
}
/* 创建定时器 */
init_timer(&imx6uirq.timer);
imx6uirq.timer.function = timer_function;
/* 初始化等待队列头 */
init_waitqueue_head(&imx6uirq.r_wait);
return 0;
}
/*
* @description : 打开设备
* @param - inode : 传递给驱动的inode
* @param - filp : 设备文件,file结构体有个叫做private_data的成员变量
* 一般在open的时候将private_data指向设备结构体。
* @return : 0 成功;其他 失败
*/
static int imx6uirq_open(struct inode *inode, struct file *filp)
{
filp->private_data = &imx6uirq; /* 设置私有数据 */
return 0;
}
/*
* @description : 从设备读取数据
* @param - filp : 要打开的设备文件(文件描述符)
* @param - buf : 返回给用户空间的数据缓冲区
* @param - cnt : 要读取的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 读取的字节数,如果为负值,表示读取失败
*/
static ssize_t imx6uirq_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
int ret = 0;
unsigned char keyvalue = 0;
unsigned char releasekey = 0;
struct imx6uirq_dev *dev = (struct imx6uirq_dev *)filp->private_data;
if (filp->f_flags & O_NONBLOCK) { /* 非阻塞访问 */
if(atomic_read(&dev->releasekey) == 0) /* 没有按键按下,返回-EAGAIN */
return -EAGAIN;
} else { /* 阻塞访问 */
/* 加入等待队列,等待被唤醒,也就是有按键按下 */
ret = wait_event_interruptible(dev->r_wait, atomic_read(&dev->releasekey));
if (ret) {
goto wait_error;
}
}
keyvalue = atomic_read(&dev->keyvalue);
releasekey = atomic_read(&dev->releasekey);
if (releasekey) { /* 有按键按下 */
if (keyvalue & 0x80) {
keyvalue &= ~0x80;
ret = copy_to_user(buf, &keyvalue, sizeof(keyvalue));
} else {
goto data_error;
}
atomic_set(&dev->releasekey, 0);/* 按下标志清零 */
} else {
goto data_error;
}
return 0;
wait_error:
return ret;
data_error:
return -EINVAL;
}
/*
* @description : poll函数,用于处理非阻塞访问
* @param - filp : 要打开的设备文件(文件描述符)
* @param - wait : 等待列表(poll_table)
* @return : 设备或者资源状态,
*/
unsigned int imx6uirq_poll(struct file *filp, struct poll_table_struct *wait)
{
unsigned int mask = 0;
struct imx6uirq_dev *dev = (struct imx6uirq_dev *)filp->private_data;
poll_wait(filp, &dev->r_wait, wait); /* 将等待队列头添加到poll_table中 */
if(atomic_read(&dev->releasekey)) { /* 按键按下 */
mask = POLLIN | POLLRDNORM; /* 返回PLLIN - 有数据可以读取*/
}
return mask;
}
/* 设备操作函数 */
static struct file_operations imx6uirq_fops = {
.owner = THIS_MODULE,
.open = imx6uirq_open,
.read = imx6uirq_read,
.poll = imx6uirq_poll,
};
/*
* @description : 驱动入口函数
* @param : 无
* @return : 无
*/
static int __init imx6uirq_init(void)
{
/* 1、构建设备号 */
if (imx6uirq.major) {
imx6uirq.devid = MKDEV(imx6uirq.major, 0);
register_chrdev_region(imx6uirq.devid, IMX6UIRQ_CNT, IMX6UIRQ_NAME);
} else {
alloc_chrdev_region(&imx6uirq.devid, 0, IMX6UIRQ_CNT, IMX6UIRQ_NAME);
imx6uirq.major = MAJOR(imx6uirq.devid);
imx6uirq.minor = MINOR(imx6uirq.devid);
}
/* 2、注册字符设备 */
cdev_init(&imx6uirq.cdev, &imx6uirq_fops);
cdev_add(&imx6uirq.cdev, imx6uirq.devid, IMX6UIRQ_CNT);
/* 3、创建类 */
imx6uirq.class = class_create(THIS_MODULE, IMX6UIRQ_NAME);
if (IS_ERR(imx6uirq.class)) {
return PTR_ERR(imx6uirq.class);
}
/* 4、创建设备 */
imx6uirq.device = device_create(imx6uirq.class, NULL, imx6uirq.devid, NULL, IMX6UIRQ_NAME);
if (IS_ERR(imx6uirq.device)) {
return PTR_ERR(imx6uirq.device);
}
/* 5、始化按键 */
atomic_set(&imx6uirq.keyvalue, INVAKEY);
atomic_set(&imx6uirq.releasekey, 0);
keyio_init();
return 0;
}
/*
* @description : 驱动出口函数
* @param : 无
* @return : 无
*/
static void __exit imx6uirq_exit(void)
{
unsigned i = 0;
/* 删除定时器 */
del_timer_sync(&imx6uirq.timer); /* 删除定时器 */
/* 释放中断 */
for (i = 0; i < KEY_NUM; i++) {
free_irq(imx6uirq.irqkeydesc[i].irqnum, &imx6uirq);
}
cdev_del(&imx6uirq.cdev);
unregister_chrdev_region(imx6uirq.devid, IMX6UIRQ_CNT);
device_destroy(imx6uirq.class, imx6uirq.devid);
class_destroy(imx6uirq.class);
}
module_init(imx6uirq_init);
module_exit(imx6uirq_exit);
MODULE_LICENSE("GPL");
应用程序
#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
#include "poll.h"
#include "sys/select.h"
#include "sys/time.h"
#include "linux/ioctl.h"
/***************************************************************
Copyright © ALIENTEK Co., Ltd. 1998-2029. All rights reserved.
文件名 : noblockApp.c
作者 : 左忠凯
版本 : V1.0
描述 : 非阻塞访问测试APP
其他 : 无
使用方法 :./blockApp /dev/blockio 打开测试App
论坛 : www.openedv.com
日志 : 初版V1.0 2019/9/8 左忠凯创建
***************************************************************/
/*
* @description : main主程序
* @param - argc : argv数组元素个数
* @param - argv : 具体参数
* @return : 0 成功;其他 失败
*/
int main(int argc, char *argv[])
{
int fd;
int ret = 0;
char *filename;
struct pollfd fds;
fd_set readfds;
struct timeval timeout;
unsigned char data;
if (argc != 2) {
printf("Error Usage!\r\n");
return -1;
}
filename = argv[1];
fd = open(filename, O_RDWR | O_NONBLOCK); /* 非阻塞访问 */
if (fd < 0) {
printf("Can't open file %s\r\n", filename);
return -1;
}
#if 0
/* 构造结构体 */
fds.fd = fd;
fds.events = POLLIN;
while (1) {
ret = poll(&fds, 1, 500);
if (ret) { /* 数据有效 */
ret = read(fd, &data, sizeof(data));
if(ret < 0) {
/* 读取错误 */
} else {
if(data)
printf("key value = %d \r\n", data);
}
} else if (ret == 0) { /* 超时 */
/* 用户自定义超时处理 */
} else if (ret < 0) { /* 错误 */
/* 用户自定义错误处理 */
}
}
#endif
while (1) {
FD_ZERO(&readfds);
FD_SET(fd, &readfds);
/* 构造超时时间 */
timeout.tv_sec = 0;
timeout.tv_usec = 500000; /* 500ms */
ret = select(fd + 1, &readfds, NULL, NULL, &timeout);
switch (ret) {
case 0: /* 超时 */
/* 用户自定义超时处理 */
break;
case -1: /* 错误 */
/* 用户自定义错误处理 */
break;
default: /* 可以读取数据 */
if(FD_ISSET(fd, &readfds)) {
ret = read(fd, &data, sizeof(data));
if (ret < 0) {
/* 读取错误 */
} else {
if (data)
printf("key value=%d\r\n", data);
}
}
break;
}
}
close(fd);
return ret;
}
需要说明的: