给定两个字符串S和T,对于T我们允许三种操作:
(1) 在任意位置添加任意字符
(2) 删除存在的任意字符
(3) 修改任意字符
问最少操作多少次可以把字符串T变成S?
例如: S= “ABCF” T = “DBFG”
那么我们可以
(1) 把D改为A
(2) 删掉G
(3) 加入C
所以答案是3。
输入
第1行:字符串a(a的长度 <= 1000)。
第2行:字符串b(b的长度 <= 1000)。
输出
输入示例
输出示例
来源:51Nod
分析: 这个最少的操作次数,通常被称之为编辑距离。“编辑距离”一次本身具有最短的意思在里面。因为题目有“最短”这样的关键词,首先我们想到的是BFS。是的,当S的距离为m, T的距离为n的时候,我们可以找到这样的操作次数的界限:
(1) 把T中字符全删了,再添加S的全部字符,操作次数m + n。
(2) 把T中字符删或加成m个,再修改 操作次数最多 |n – m| + m。
虽然,我们找到了这样的上界,BFS从实际角度并不可行,因为搜索空间是指数的,这取决于S中的字符种类——具体的数量级不好估计。
这个问题之所以难,是难在有“添加”“删除”这样的操作,很麻烦。我们试试换个角度理解问题,把它看成字符串对齐的问题,事实上从生物信息学对比基因的角度,我们可以这样理解问题。
给定字符串S和T,我们可以用一种特殊字符促成两个字符串的对齐。我们加的特殊字符是“-”, 我们允许在S和T中任意添加这种特殊字符使得它长度相同,然后让这两个串“对齐”,最终两个串相同位置出现了不同字符,就扣1分,我们要使得这两个串对齐扣分尽量少。
对于例子 我们实际上采取了这样的对齐方式:
12345
ABCF-
DB-FG
注意:如果要对齐,两个“-”相对是没有意义的,所以我们要求不出现这种情况。
那么看一下:
(1) S,T对应位置都是普通字符,相同,则不扣分。 例如位置2,4
(2) S,T对应位置都是普通字符,不同,则扣1分。 例如位置1
(3) S在该位置是特殊字符,T在该位置是普通字符,则扣1分,例如位置5
(4) S在该位置是普通字符,T在该位置是特殊字符,则扣1分,例如位置3
我们来看看扣分项目对应什么?
(1) 不扣分,直接对应
(2) 对应把T中对应位置的字符修改
(3) 对应在T中删除该字符
(4) 对应在T中添加该字符
好了,目标明确,感觉像不像 LCS?我们尝试一下:
设f(i,j)表示S的前i位和T的前j位对齐后的最少扣分。
那我们来看看最后一位,对齐的情况
(1) 必须S[i] == T[j], 这时前i – 1和j – 1位都已经对齐了,这部分肯定要最少扣分。这种情况下最少的扣分是f(i-1,j-1)
(2) 和(1)类似,S[i]≠T[j],这种情况下最少的扣分是f(i -1, j – 1) + 1
(3) S的前i位和T的前(j – 1)位已经对齐了,这部分扣分也要最少。这种情况下最少的扣分是f(i,j-1) + 1
(4) S的前(i-1)位已经和T的前j位对齐了,这部分扣分要最少。这种情况下最少的扣分是f(i,j-1) + 1
具体f(i,j)取什么值,显然是要看哪种情况的扣分最少。
为了方便,我们定义函数same(i,j)表示如果S[i] == T[j]则为0,否则为1。
我们来表示一下递推式:
f(i,j) = min(f(i – 1, j – 1) + same(i,j), f(i – 1,j ) + 1, f(i, j – 1) + 1)
初值是什么?
f(0, j) = j
f(i, 0) = i
这时因为对于S的前0位,我们只能在之前加入“-”,或者说把T全部删掉了。类似地,对于T地前0位,我们只能把S的字符都加进来,别无选择。
注意上述两个式子的重合点 f(0,0) = 0也符合我们的定义,并不矛盾。
时间复杂度? O(m * n),空间复杂度? O(m * n)。同样我们发现到f(i,j)只与本行和上一行有关,可以省掉一维的空间复杂度,从而达到O(n)。
优化后的伪代码:
for j = 0 to n do
f[j] = j
endfor
for i = 1 to m do
last = f[0]
f[0] = i
for j = 1 to n do
temp = f[i,j]
f[i,j] = min(last + same(i,j), temp + 1, f[j – 1] + 1)
last = temp
endfor
endfor
注意: 我们对于i实际上更新j的顺序是由小到达的,所以我们需要保存“旧的”f[i-1,j – 1]。
我的代码
#include
#include
#include
using namespace std;
string a,b,t;
int dp[1020][1020];
int main()
{
cin>>a>>b;
int n=a.length();
int m=b.length();
memset(dp,0,sizeof(dp));
for(int i=0;i<=max(n,m);i++)
dp[0][i]=dp[i][0]=i;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(a[i-1]==b[j-1])
dp[i][j]=dp[i-1][j-1];
else
dp[i][j]=dp[i-1][j-1]+1;
dp[i][j]=min(min(dp[i-1][j],dp[i][j-1])+1,dp[i][j]);
}
}
cout<