Elasticsearch:inverted index,doc_values及source

当我们学习Elasticsearch时,经常会遇到如下的几个概念:

  • Reverted index
  • doc_values
  • source?

这个几个概念分别指的是什么?有什么用处?如何配置它们?只有我们熟练地掌握了这些概念,我们才可以正确地使用它们。

Elasticsearch:inverted index,doc_values及source_第1张图片

 

Inverted index

inverted index(反向索引)是Elasticsearch和任何其他支持全文搜索的系统的核心数据结构。 反向索引类似于您在任何书籍结尾处看到的索引。 它将出现在文档中的术语映射到文档。

例如,您可以从以下字符串构建反向索引:

Elasticsearch从已建立索引的三个文档中构建数据结构。 以下数据结构称为反向索引(inverted index)

Term Frequency Document (postings)
choice 1 3
day 1 2
is 3 1,2,3
it 1 1
last 1 2
of 1 2
of 1 2
sunday 2 1,2
the 3 2,3
tomorrow 1 1
week 1 2
yours 1 3

在这里反向索引指的的是,我们根据term来寻找相应的文档ids。这和常规的根据文档id来寻找term相反。

请注意以下几点:

  • 删除标点符号并将其小写后,文档会按术语进行细分。
  • 术语按字母顺序排序
  • “Frequency”列捕获该术语在整个文档集中出现的次数

  • 第三列捕获了在其中找到该术语的文档。 此外,它还可能包含找到该术语的确切位置(文档中的偏移)

在文档中搜索术语时,查找给定术语出现在其中的文档非常快捷。 如果用户搜索术语“sunday”,那么从“Term”列中查找sunday将非常快,因为这些术语在索引中进行了排序。 即使有数百万个术语,也可以在对术语进行排序时快速查找它们。

随后,考虑一种情况,其中用户搜索两个单词,例如last sunday。 反向索引可用于分别搜索last和sunday的发生; 文档2包含这两个术语,因此比仅包含一个术语的文档1更好。

反向索引是执行快速搜索的基础。 同样,很容易查明索引中出现了多少次术语。 这是一个简单的计数汇总。 当然,Elasticsearch在我们在这里解释的简单的反向排索引的基础上使用了很多创新。 它兼顾搜索和分析。

默认情况下,Elasticsearch在文档中的所有字段上构建一个反向索引,指向该字段所在的Elasticsearch文档。也就是说在每个Elasticsearch的Lucene里,有一个位置存放这个inverted index。

 

在Kibana中,我们建立一个如下的文档:

PUT twitter/_doc/1
{
  "user" : "双榆树-张三",
  "message" : "今儿天气不错啊,出去转转去",
  "uid" : 2,
  "age" : 20,
  "city" : "北京",
  "province" : "北京",
  "country" : "中国",
  "name": {
    "firstname": "三",
    "surname": "张"
  },
  "address" : [
    "中国北京市海淀区",
    "中关村29号"
  ],
  "location" : {
    "lat" : "39.970718",
    "lon" : "116.325747"
  }
}

当这个文档被建立好以后,Elastic就已经帮我们建立好了相应的inverted index供我们进行搜索,比如:

GET twitter/_search
{
  "query": {
    "match": {
      "user": "张三"
    }
  }
}

我们可与得到相应的搜索结果:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 0.5753642,
    "hits" : [
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.5753642,
        "_source" : {
          "user" : "双榆树-张三",
          "message" : "今儿天气不错啊,出去转转去",
          "uid" : 2,
          "age" : 20,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "name" : {
            "firstname" : "三",
            "surname" : "张"
          },
          "address" : [
            "中国北京市海淀区",
            "中关村29号"
          ],
          "location" : {
            "lat" : "39.970718",
            "lon" : "116.325747"
          }
        }
      }
    ]
  }
}

如果我们想不让我们的某个字段不被搜索,也就是说不想为这个字段建立inverted index,那么我们可以这么做:

DELETE twitter
PUT twitter
{
  "mappings": {
    "properties": {
      "city": {
        "type": "keyword",
        "ignore_above": 256
      },
      "address": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "age": {
        "type": "long"
      },
      "country": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "location": {
        "properties": {
          "lat": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "lon": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          }
        }
      },
      "message": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "name": {
        "properties": {
          "firstname": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "surname": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          }
        }
      },
      "province": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "uid": {
        "type": "long"
      },
      "user": {
        "type": "object",
        "enabled": false
      }
    }
  }
}

PUT twitter/_doc/1
{
  "user" : "双榆树-张三",
  "message" : "今儿天气不错啊,出去转转去",
  "uid" : 2,
  "age" : 20,
  "city" : "北京",
  "province" : "北京",
  "country" : "中国",
  "name": {
    "firstname": "三",
    "surname": "张"
  },
  "address" : [
    "中国北京市海淀区",
    "中关村29号"
  ],
  "location" : {
    "lat" : "39.970718",
    "lon" : "116.325747"
  }
}

在上面,我们通过mapping对user字段进行了修改:

 "user": {
        "type": "object",
        "enabled": false
  }

也就是说这个字段将不被建立索引,我们如果使用这个字段进行搜索的话,不会产生任何的结果:

GET twitter/_search
{
  "query": {
    "match": {
      "user": "张三"
    }
  }
}

搜索的结果为:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 0,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  }
}

显然是没有任何的结果。但是如果我们对这个文档进行查询的话:

GET twitter/_doc/1

显示的结果是:

{
  "_index" : "twitter",
  "_type" : "_doc",
  "_id" : "1",
  "_version" : 1,
  "_seq_no" : 0,
  "_primary_term" : 1,
  "found" : true,
  "_source" : {
    "user" : "双榆树-张三",
    "message" : "今儿天气不错啊,出去转转去",
    "uid" : 2,
    "age" : 20,
    "city" : "北京",
    "province" : "北京",
    "country" : "中国",
    "name" : {
      "firstname" : "三",
      "surname" : "张"
    },
    "address" : [
      "中国北京市海淀区",
      "中关村29号"
    ],
    "location" : {
      "lat" : "39.970718",
      "lon" : "116.325747"
    }
  }
}

显然user的信息是存放于source里的。只是它不被我们所搜索而已。

如果我们不想我们的整个文档被搜索,我们甚至可以直接采用如下的方法:

DELETE twitter

PUT twitter 
{
  "mappings": {
    "enabled": false 
  }
}

那么整个twitter索引将不建立任何的inverted index,那么我们通过如下的命令:
 

PUT twitter/_doc/1
{
  "user" : "双榆树-张三",
  "message" : "今儿天气不错啊,出去转转去",
  "uid" : 2,
  "age" : 20,
  "city" : "北京",
  "province" : "北京",
  "country" : "中国",
  "name": {
    "firstname": "三",
    "surname": "张"
  },
  "address" : [
    "中国北京市海淀区",
    "中关村29号"
  ],
  "location" : {
    "lat" : "39.970718",
    "lon" : "116.325747"
  }
}

GET twitter/_search
{
  "query": {
    "match": {
      "city": "北京"
    }
  }
}

上面的命令执行的结果是,没有任何搜索的结果。更多阅读,可以参阅“Mapping parameters: enabled”。

我们也可以使用如下的方式来使得我们禁止对一个字段进行查询:

{
  "mappings": {
    "properties": {
      "http_version": {
        "type": "keyword",
        "index": false
      }
     ...
    }
  }
}

上面的设置使得http_version不被索引。上面的mapping使得我们不能对http_version字段进行搜索,从而节省磁盘空间,但是它并不妨碍我们对该字段进行aggregation及对source的访问。

 

Source

在Elasticsearch中,通常每个文档的每一个字段都会被存储在shard里存放source的地方,比如:

PUT twitter/_doc/2
{
  "user" : "双榆树-张三",
  "message" : "今儿天气不错啊,出去转转去",
  "uid" : 2,
  "age" : 20,
  "city" : "北京",
  "province" : "北京",
  "country" : "中国",
  "name": {
    "firstname": "三",
    "surname": "张"
  },
  "address" : [
    "中国北京市海淀区",
    "中关村29号"
  ],
  "location" : {
    "lat" : "39.970718",
    "lon" : "116.325747"
  }
}

在这里,我们创建了一个id为2的文档。我们可以通过如下的命令来获得它的所有的存储的信息。

GET twitter/_doc/2

它将返回:

{
  "_index" : "twitter",
  "_type" : "_doc",
  "_id" : "2",
  "_version" : 1,
  "_seq_no" : 1,
  "_primary_term" : 1,
  "found" : true,
  "_source" : {
    "user" : "双榆树-张三",
    "message" : "今儿天气不错啊,出去转转去",
    "uid" : 2,
    "age" : 20,
    "city" : "北京",
    "province" : "北京",
    "country" : "中国",
    "name" : {
      "firstname" : "三",
      "surname" : "张"
    },
    "address" : [
      "中国北京市海淀区",
      "中关村29号"
    ],
    "location" : {
      "lat" : "39.970718",
      "lon" : "116.325747"
    }
  }
}

在上面的_source里我们可以看到Elasticsearch为我们所存下的所有的字段。如果我们不想存储任何的字段,那么我们可以做如下的设置:

DELETE twitter

PUT twitter
{
  "mappings": {
    "_source": {
      "enabled": false
    }
  }
}

那么我们使用如下的命令来创建一个id为1的文档:

PUT twitter/_doc/1
{
  "user" : "双榆树-张三",
  "message" : "今儿天气不错啊,出去转转去",
  "uid" : 2,
  "age" : 20,
  "city" : "北京",
  "province" : "北京",
  "country" : "中国",
  "name": {
    "firstname": "三",
    "surname": "张"
  },
  "address" : [
    "中国北京市海淀区",
    "中关村29号"
  ],
  "location" : {
    "lat" : "39.970718",
    "lon" : "116.325747"
  }
}

那么同样地,我们来查询一下这个文档:

GET twitter/_doc/1

显示的结果为:

{
  "_index" : "twitter",
  "_type" : "_doc",
  "_id" : "1",
  "_version" : 1,
  "_seq_no" : 0,
  "_primary_term" : 1,
  "found" : true
}

显然我们的文档是被找到了,但是我们看不到任何的source。那么我们能对这个文档进行搜索吗?尝试如下的命令:

GET twitter/_search
{
  "query": {
    "match": {
      "city": "北京"
    }
  }
}

显示的结果为:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 0.5753642,
    "hits" : [
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.5753642
      }
    ]
  }
}

显然这个文档id为1的文档可以被正确地搜索,也就是说它有完好的inverted index供我们查询,虽然它没有它的source。

那么我们如何有选择地进行存储我们想要的字段呢?这种情况适用于我们想节省自己的存储空间,只存储那些我们需要的字段到source里去。我们可以做如下的设置:

DELETE twitter

PUT twitter
{
  "mappings": {
    "_source": {
      "includes": [
        "*.lat",
        "address",
        "name.*"
      ],
      "excludes": [
        "name.surname"
      ]
    }    
  }
}

在上面,我们使用include来包含我们想要的字段,同时我们通过exclude来去除那些不需要的字段。我们尝试如下的文档输入:

PUT twitter/_doc/1
{
  "user" : "双榆树-张三",
  "message" : "今儿天气不错啊,出去转转去",
  "uid" : 2,
  "age" : 20,
  "city" : "北京",
  "province" : "北京",
  "country" : "中国",
  "name": {
    "firstname": "三",
    "surname": "张"
  },
  "address" : [
    "中国北京市海淀区",
    "中关村29号"
  ],
  "location" : {
    "lat" : "39.970718",
    "lon" : "116.325747"
  }
}

通过如下的命令来进行查询,我们可以看到:

GET twitter/_doc/1

结果是:

{
  "_index" : "twitter",
  "_type" : "_doc",
  "_id" : "1",
  "_version" : 1,
  "_seq_no" : 0,
  "_primary_term" : 1,
  "found" : true,
  "_source" : {
    "address" : [
      "中国北京市海淀区",
      "中关村29号"
    ],
    "name" : {
      "firstname" : "三"
    },
    "location" : {
      "lat" : "39.970718"
    }
  }
}

显然,我们只有很少的几个字段被存储下来了。通过这样的方法,我们可以有选择地存储我们想要的字段。

在实际的使用中,我们在查询文档时,也可以有选择地进行显示我们想要的字段,尽管有很多的字段被存于source中:

GET twitter/_doc/1?_source=name,location

在这里,我们只想显示和name及location相关的字段,那么显示的结果为:

{
  "_index" : "twitter",
  "_type" : "_doc",
  "_id" : "1",
  "_version" : 1,
  "_seq_no" : 0,
  "_primary_term" : 1,
  "found" : true,
  "_source" : {
    "name" : {
      "firstname" : "三"
    },
    "location" : {
      "lat" : "39.970718"
    }
  }
}

更多的阅读,可以参阅文档“Mapping meta-field: _source”

 

Doc_values

默认情况下,大多数字段都已编入索引,这使它们可搜索。反向索引允许查询在唯一的术语排序列表中查找搜索词,并从中立即访问包含该词的文档列表。

sort,aggregtion和访问脚本中的字段值需要不同的数据访问模式。除了查找术语和查找文档外,我们还需要能够查找文档并查找其在字段中具有的术语。

Doc values是在文档索引时构建的磁盘数据结构,这使这种数据访问模式成为可能。它们存储与_source相同的值,但以面向列(column)的方式存储,这对于排序和聚合而言更为有效。几乎所有字段类型都支持Doc值,但对字符串字段除外 (text 及annotated_text)。Doc values告诉你对于给定的文档ID,字段的值是什么。比如,当我们向Elasticsearch中加入如下的文档:

PUT cities
{
  "mappings": {
    "properties": {
      "city": {
        "type": "keyword"
      }
    }
  }
}

PUT cities/_doc/1
{
  "city": "Wuhan"
}

PUT cities/_doc/2
{
  "city": "Beijing"
}

PUT cities/_doc/3
{
  "city": "Shanghai"
}

那么将在在Elasticsearch中将创建像如下的doc_values的一个列存储(Columnar store)表格:

doc id city
1 Wuhan
2 Beijing
3 Shanghai

默认情况下,所有支持doc值的字段均已启用它们。如果您确定不需要对字段进行排序或汇总,也不需要通过脚本访问字段值,则可以禁用doc值以节省磁盘空间:

比如我们可以通过如下的方式来使得city字段不可以做sort或aggregation:

DELETE twitter
PUT twitter
{
  "mappings": {
    "properties": {
      "city": {
        "type": "keyword",
        "doc_values": false,
        "ignore_above": 256
      },
      "address": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "age": {
        "type": "long"
      },
      "country": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "location": {
        "properties": {
          "lat": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "lon": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          }
        }
      },
      "message": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "name": {
        "properties": {
          "firstname": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "surname": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          }
        }
      },
      "province": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "uid": {
        "type": "long"
      },
      "user": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      }
    }
  }
}

在上面,我们把city字段的doc_values设置为false。

      "city": {
        "type": "keyword",
        "doc_values": false,
        "ignore_above": 256
      },

 

我们通过如下的方法来创建一个文档:

PUT twitter/_doc/1
{
  "user" : "双榆树-张三",
  "message" : "今儿天气不错啊,出去转转去",
  "uid" : 2,
  "age" : 20,
  "city" : "北京",
  "province" : "北京",
  "country" : "中国",
  "name": {
    "firstname": "三",
    "surname": "张"
  },
  "address" : [
    "中国北京市海淀区",
    "中关村29号"
  ],
  "location" : {
    "lat" : "39.970718",
    "lon" : "116.325747"
  }
}

那么,当我们使用如下的方法来进行aggregation时:

GET twitter/_search
{
  "size": 0,
  "aggs": {
    "city_bucket": {
      "terms": {
        "field": "city",
        "size": 10
      }
    }
  }
}

在我们的Kibana上我们可以看到:

{
  "error": {
    "root_cause": [
      {
        "type": "illegal_argument_exception",
        "reason": "Can't load fielddata on [city] because fielddata is unsupported on fields of type [keyword]. Use doc values instead."
      }
    ],
    "type": "search_phase_execution_exception",
    "reason": "all shards failed",
    "phase": "query",
    "grouped": true,
    "failed_shards": [
      {
        "shard": 0,
        "index": "twitter",
        "node": "IyyZ30-hRi2rnOpfx4n1-A",
        "reason": {
          "type": "illegal_argument_exception",
          "reason": "Can't load fielddata on [city] because fielddata is unsupported on fields of type [keyword]. Use doc values instead."
        }
      }
    ],
    "caused_by": {
      "type": "illegal_argument_exception",
      "reason": "Can't load fielddata on [city] because fielddata is unsupported on fields of type [keyword]. Use doc values instead.",
      "caused_by": {
        "type": "illegal_argument_exception",
        "reason": "Can't load fielddata on [city] because fielddata is unsupported on fields of type [keyword]. Use doc values instead."
      }
    }
  },
  "status": 400
}

显然,我们的操作是失败的。尽管我们不能做aggregation及sort,但是我们还是可以通过如下的命令来得到它的source:

GET twitter/_doc/1

显示结果为:

{
  "_index" : "twitter",
  "_type" : "_doc",
  "_id" : "1",
  "_version" : 1,
  "_seq_no" : 0,
  "_primary_term" : 1,
  "found" : true,
  "_source" : {
    "user" : "双榆树-张三",
    "message" : "今儿天气不错啊,出去转转去",
    "uid" : 2,
    "age" : 20,
    "city" : "北京",
    "province" : "北京",
    "country" : "中国",
    "name" : {
      "firstname" : "三",
      "surname" : "张"
    },
    "address" : [
      "中国北京市海淀区",
      "中关村29号"
    ],
    "location" : {
      "lat" : "39.970718",
      "lon" : "116.325747"
    }
  }
}

更多阅读请参阅“Mapping parameters: doc_values”。

你可能感兴趣的:(Elastic,Elasticsearch,Elastic,elasticsearch)