在机器学习模型(特别是深度学习模型)的训练过程中,模型是非常容易过拟合的。深度学习模型在不断的训练过程中训练误差会逐渐降低,但测试误差的走势则不一定。
在模型的训练过程中,模型只能利用训练数据来进行训练,模型并不能接触到测试集上的样本。因此模型如果将训练集学的过好,模型就会记住训练样本的细节,导致模型在测试集的泛化效果较差,这种现象称为过拟合(Overfitting)。与过拟合相对应的是欠拟合(Underfitting),即模型在训练集上的拟合效果较差。
导致模型过拟合的情况有很多种原因,其中最为常见的情况是模型复杂度(Model Complexity )太高,导致模型学习到了训练数据的方方面面,学习到了一些细枝末节的规律。
解决上述问题最好的解决方法:从训练集中划分出一个验证集来验证训练模型的好坏,在训练过程中不断验证模型在验证集上的精度,并以此控制模型的训练。
验证集的划分有如下几种方式:
留出法(Hold-Out)
直接将训练集划分成两部分,新的训练集和验证集。这种划分方式的优点是最为直接简单;缺点是只得到了一份验证集,有可能导致模型在验证集上过拟合。留出法应用场景是数据量比较大的情况。
k折交叉验证法(Cross Validation,CV)
将训练集划分成K份,将其中的K-1份作为训练集,剩余的1份作为验证集,循环K训练。这种划分方式是所有的训练集都是验证集,最终模型验证精度是K份平均得到。这种方式的优点是验证集精度比较可靠,训练K次可以得到K个有多样性差异的模型;CV验证的缺点是需要训练K次,不适合数据量很大的情况。
自助采样法(BootStrap)
通过有放回的采样方式得到新的训练集和验证集,每次的训练集和验证集都是有区别的。这种划分方式一般适用于数据量较小的情况。
import torch.nn as nn
from torch.utils.data.dataset import Dataset
# class SVHN_Model1(nn.Module):
# def __init__(self):
# super(SVHN_Model1, self).__init__()
# model_conv = models.resnet18(pretrained=True)
# model_conv.avgpool = nn.AdaptiveAvgPool2d(1)
# model_conv = nn.Sequential(*list(model_conv.children())[:-1])
# self.cnn = model_conv
# self.fc1 = nn.Linear(512, 11)
# self.fc2 = nn.Linear(512, 11)
# self.fc3 = nn.Linear(512, 11)
# self.fc4 = nn.Linear(512, 11)
# self.fc5 = nn.Linear(512, 11)
# def forward(self, img):
# feat = self.cnn(img)
# # print(feat.shape)
# feat = feat.view(feat.shape[0], -1)
# c1 = self.fc1(feat)
# c2 = self.fc2(feat)
# c3 = self.fc3(feat)
# c4 = self.fc4(feat)
# c5 = self.fc5(feat)
# return c1, c2, c3, c4, c5
train_loader = torch.utils.data.DataLoader(
# train_dataset,
batch_size=10,
shuffle=True,
num_workers=10,
)
val_loader = torch.utils.data.DataLoader(
# val_dataset,
batch_size=10,
shuffle=False,
num_workers=10,
)
model = SVHN_Model1()
criterion = nn.CrossEntropyLoss (size_average=False)
optimizer = torch.optim.Adam(model.parameters(), 0.001)
best_loss = 1000.0
for epoch in range(20):
print('Epoch: ', epoch)
train(train_loader, model, criterion, optimizer, epoch)
val_loss = validate(val_loader, model, criterion)
# 记录下验证集精度
if val_loss < best_loss:
best_loss = val_loss
torch.save(model.state_dict(), './model.pt')
其中每个Epoch的训练代码如下:
def train(train_loader, model, criterion, optimizer, epoch):
# 切换模型为训练模式
model.train()
for i, (input, target) in enumerate(train_loader):
c0, c1, c2, c3, c4, c5 = model(data[0])
loss = criterion(c0, data[1][:, 0]) + \
criterion(c1, data[1][:, 1]) + \
criterion(c2, data[1][:, 2]) + \
criterion(c3, data[1][:, 3]) + \
criterion(c4, data[1][:, 4]) + \
criterion(c5, data[1][:, 5])
loss /= 6
optimizer.zero_grad()
loss.backward()
optimizer.step()
其中每个Epoch的验证代码如下:
def validate(val_loader, model, criterion):
# 切换模型为预测模型
model.eval()
val_loss = []
# 不记录模型梯度信息
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
c0, c1, c2, c3, c4, c5 = model(data[0])
loss = criterion(c0, data[1][:, 0]) + \
criterion(c1, data[1][:, 1]) + \
criterion(c2, data[1][:, 2]) + \
criterion(c3, data[1][:, 3]) + \
criterion(c4, data[1][:, 4]) + \
criterion(c5, data[1][:, 5])
loss /= 6
val_loss.append(loss.item())
return np.mean(val_loss)
torch.save(model_object.state_dict(), 'model.pt')#保存模型
model.load_state_dict(torch.load(' model.pt')) #加载模型
深度学习原理少但实践性非常强,基本上很多的模型的验证只能通过训练来完成。同时深度学习有众多的网络结构和超参数,因此需要反复尝试。训练深度学习模型需要GPU的硬件支持,也需要较多的训练时间,如何有效的训练深度学习模型逐渐成为了一门学问。
深度学习有众多的训练技巧,比较推荐的阅读链接有:
http://karpathy.github.io/2019/04/25/recipe/