主要知识点:
- 分组聚合操作—嵌套bucket。
本讲以前面电商实例,从颜色到品牌进行下钻分析,每种颜色的平均价格,以及找到每种颜色每个品牌的平均价格。
比如说,现在红色的电视有4台,同时这4台电视中,有3台是属于长虹的,1台是属于小米的,那么:
- 红色电视中的3台长虹的平均价格是多少?
- 红色电视中的1台小米的平均价格是多少?
下钻的意思是,已经分了一个组了,比如说颜色的分组,然后还要继续对这个分组内的数据,再分组,比如一个颜色内,还可以分成多个不同的品牌的组,最后对每个最小粒度的分组执行聚合分析操作,这就叫做下钻分析,表示在es语法上就是bucket进行多层嵌套。
语法:
GET /tvs/sales/_search
{
"size": 0,
"aggs": {
"group_by_color": {
"terms": {
"field": "color"
},
"aggs": {
"color_avg_price": {
"avg": {
"field": "price"
}
},
"group_by_brand": {
"terms": {
"field": "brand"
},
"aggs": {
"brand_avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
}
}
执行结果(部分):
"aggregations": {
"group_by_color": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "红色",
"doc_count": 4,
"color_to_price": {
"value": 3250
},
"group_by_brand": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "长虹",
"doc_count": 3,
"brand_avg_price": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 2000,
"doc_count": 2
},
{
"key": 1000,
"doc_count": 1
}
]
}
},
{
"key": "三星",
"doc_count": 1,
"brand_avg_price": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 8000,
"doc_count": 1
}
]
}
}
]
}
}
一定要注意这种写法,要注意这些语句的层级关系。