机器学习--11

 

 

1. 读邮件数据集文件,提取邮件本身与标签。

列表

numpy数组

2.邮件预处理

  1. 邮件分句
  2. 句子分词
  3. 大小写,标点符号,去掉过短的单词
  4. 词性还原:复数、时态、比较级
  5. 连接成字符串

2.1 传统方法来实现

2.2 nltk库的安装与使用

pip install nltk

import nltk

nltk.download()     # sever地址改成 http://www.nltk.org/nltk_data/

https://github.com/nltk/nltk_data下载gh-pages分支,里面的Packages就是我们要的资源。

将Packages文件夹改名为nltk_data。

网盘链接:https://pan.baidu.com/s/1iJGCrz4fW3uYpuquB5jbew    提取码:o5ea

放在用户目录。

----------------------------------

安装完成,通过下述命令可查看nltk版本:

import nltk

print nltk.__doc__

 
 

2.1 nltk库 分词

nltk.sent_tokenize(text) #对文本按照句子进行分割

nltk.word_tokenize(sent) #对句子进行分词

2.2 punkt 停用词

from nltk.corpus import stopwords

stops=stopwords.words('english')

*如果提示需要下载punkt

nltk.download(‘punkt’)

或 下载punkt.zip

https://pan.baidu.com/s/1OwLB0O8fBWkdLx8VJ-9uNQ  密码:mema

复制到对应的失败的目录C:\Users\Administrator\AppData\Roaming\nltk_data\tokenizers并解压。

 

2.3 NLTK 词性标注

nltk.pos_tag(tokens)

2.4 Lemmatisation(词性还原)

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

lemmatizer.lemmatize('leaves') #缺省名词

lemmatizer.lemmatize('best',pos='a')

lemmatizer.lemmatize('made',pos='v')

一般先要分词、词性标注,再按词性做词性还原。

2.5 编写预处理函数

def preprocessing(text):

sms_data.append(preprocessing(line[1])) #对每封邮件做预处理

 

3. 训练集与测试集

4. 词向量

5. 模型

import csv
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer

def get_word_pos(tag):
if tag.startswith('J'):
return nltk.corpus.wordnet.ADJ
elif tag.startswith('V'):
return nltk.corpus.wordnet.VERB
elif tag.startswith('N'):
return nltk.corpus.wordnet.NOUN
elif tag.startswith('R'):
return nltk.corpus.wordnet.ADV
else:
return ''

def pre(data):
word = []
for sent in nltk.sent_tokenize(data):
for words in nltk.word_tokenize(sent):
word.append(words)
stops = stopwords.words('english')
word = [w.lower() for w in word if w not in stops]
sep = '\.,:;?!-"\'_=!@#$%^&*()'
word = [w.strip(sep) for w in word]
newword = []
for w in word:
if len(w) >= 2:
newword.append(w)
lr = WordNetLemmatizer()
tag = nltk.pos_tag(newword)
newtag = []
for i,ts in enumerate(tag):
if ts:
po = get_word_pos(tag[i][1])
if po:
wd =lr.lemmatize(ts[0],pos=po)
newtag.append(wd)
else:
newtag.append(ts[0])
else:
newtag.append(ts[0])
return newtag

file_path=r'SMSSpamCollectio'
sms=open(file_path,'r',encoding='utf-8')
sms_data=[]
sms_label=[]
csv_reader=csv.reader(sms,delimiter='\t')
for line in csv_reader:
sms_label.append(line[0])
sms_data.append(pre(line[1]))
sms.close()
print(sms_label)
for i in range(len(sms_data)):
print(sms_data[i])



机器学习--11_第1张图片

 

你可能感兴趣的:(机器学习--11)