进行Spark核心编程时,首先要做的第一件事,就是创建一个初始的RDD。该RDD中,通常就代表和包含了Spark应用程序的输入源数据。然后在创建了初始的RDD之后,才可以通过Spark Core提供的transformation算子,对该RDD进行转换,来获取其他的RDD
Spark Core提供了三种创建RDD的方式,包括:使用程序中的集合创建RDD;使用本地文件创建RDD;使用HDFS文件创建RDD。
如果要通过并行化集合来创建RDD,需要针对程序中的集合,调用SparkContext的parallelize()方法。Spark会将集合中的数据拷贝到集群上去,形成一个分布式的数据集合,也就是一个RDD。相当于是,集合中的部分数据会到一个节点上,而另一部分数据会到其他节点上。然后就可以用并行的方式来操作这个分布式数据集合,即RDD。
// 案例:1到10累加求和 val arr = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) val rdd = sc.parallelize(arr) val sum = rdd.reduce(_ + _)
调用parallelize()时,有一个重要的参数可以指定,就是要将集合切分成多少个partition。Spark会为每一个partition运行一个task来进行处理。Spark官方的建议是,为集群中的每个CPU创建2~4个partition。Spark默认会根据集群的情况来设置partition的数量。但是也可以在调用parallelize()方法时,传入第二个参数,来设置RDD的partition数量。比如parallelize(arr, 10)
Spark是支持使用任何Hadoop支持的存储系统上的文件创建RDD的,比如说HDFS、Cassandra、HBase以及本地文件。通过调用SparkContext的textFile()方法,可以针对本地文件或HDFS文件创建RDD。
有几个事项是需要注意的:
// 案例:
文件字数统计 val rdd = sc.textFile("data.txt") val wordCount = rdd.map(line => line.length).reduce(_ + _)
Spark的textFile()除了可以针对上述几种普通的文件创建RDD之外,还有一些特列的方法来创建RDD:
Spark支持两种RDD操作:transformation和action。transformation操作会针对已有的RDD创建一个新的RDD;而action则主要是对RDD进行最后的操作,比如遍历、reduce、保存到文件等,并可以返回结果给Driver程序。
例如,map就是一种transformation操作,它用于将已有RDD的每个元素传入一个自定义的函数,并获取一个新的元素,然后将所有的新元素组成一个新的RDD。而reduce就是一种action操作,它用于对RDD中的所有元素进行聚合操作,并获取一个最终的结果,然后返回给Driver程序。
transformation的特点就是lazy特性。lazy特性指的是,如果一个spark应用中只定义了transformation操作,那么即使你执行该应用,这些操作也不会执行。也就是说,transformation是不会触发spark程序的执行的,它们只是记录了对RDD所做的操作,但是不会自发的执行。只有当transformation之后,接着执行了一个action操作,那么所有的transformation才会执行。Spark通过这种lazy特性,来进行底层的spark应用执行的优化,避免产生过多中间结果。
action操作执行,会触发一个spark job的运行,从而触发这个action之前所有的transformation的执行。这是action的特性。
这里通过一个之前学习过的案例,统计文件字数,来讲解transformation和action。
// 这里通过textFile()方法,针对外部文件创建了一个RDD,lines,但是实际上,程序执行到这里为止,spark.txt文件的数据是不会加载到内存中的。lines,只是代表了一个指向spark.txt文件的引用。 val lines = sc.textFile("spark.txt")
// 这里对lines RDD进行了map算子,获取了一个转换后的lineLengths RDD。但是这里连数据都没有,当然也不会做任何操作。lineLengths RDD也只是一个概念上的东西而已。 val lineLengths = lines.map(line => line.length)
// 之列,执行了一个action操作,reduce。此时就会触发之前所有transformation操作的执行,Spark会将操作拆分成多个task到多个机器上并行执行,每个task会在本地执行map操作,并且进行本地的reduce聚合。最后会进行一个全局的reduce聚合,然后将结果返回给Driver程序。
val totalLength = lineLengths.reduce(_ + _)
Spark有些特殊的算子,也就是特殊的transformation操作。比如groupByKey、sortByKey、reduceByKey等,其实只是针对特殊的RDD的。即包含key-value对的RDD。而这种RDD中的元素,实际上是scala中的一种类型,即Tuple2,也就是包含两个值的Tuple。
在scala中,需要手动导入Spark的相关隐式转换,import org.apache.spark.SparkContext._。然后,对应包含Tuple2的RDD,会自动隐式转换为PairRDDFunction,并提供reduceByKey等方法。
val lines = sc.textFile("hello.txt")
val linePairs = lines.map(line => (line, 1))
val lineCounts = linePairs.reduceByKey(_ + _)
lineCounts.foreach(lineCount => println(lineCount._1 + " appears " + llineCount._2 + " times."))