算法描述:
1)软符号值计算(soft-symbol)
根据译码器反馈回来的每比特的外信息计算每比特的概率
\[\Pr \left( {b_{j,k}^{\left( i \right)} = + 1} \right) = \frac{1}{2} + \frac{1}{2}\tanh \left( {\frac{1}{2}L_{j,k}^{\left( i \right)}} \right)\]
根据每比特概率计算每符号概率
\[\Pr \left( {x_j^{\left( i \right)} = a} \right) = \prod\nolimits_k {\Pr \left( {b_{j,k}^{\left( i \right)} = {z_k}} \right)} \]
计算软符号值
\[\tilde x_j^{\left( i \right)} = \sum\nolimits_{a \in {\bf{\theta }}} {\Pr \left( {x_j^{\left( i \right)} = a} \right) \cdot a} \]
DFT变换
\[{{\bf{\tilde s}}^{\left( i \right)}} = {\left[ {\tilde s_1^{\left( i \right)}\;\tilde s_2^{\left( i \right)}\; \cdots \tilde s_N^{\left( i \right)}} \right]^T} = {F_N}{{\bf{\tilde x}}^{\left( i \right)}}\]
2)并行干扰消除
第w个子载波消除第i个用户后的接收信号为
\[{{\bf{\hat y}}_{\left. w \right|i}} = {{\bf{y}}_w} - \sum\nolimits_{j \ne i} {{{\bf{h}}_{j,w}}\tilde s_w^{\left( j \right)}} = {{\bf{H}}_w}{{\bf{z}}_{\left. w \right|i}} + {\bf{n}}\]
其中,${{\bf{h}}_{j,w}}$为矩阵${{\bf{H}}_w}$的第j列,${{\bf{z}}_{\left. w \right|i}} = {\left[ {{\bf{z}}_{\left. w \right|i}^{\left( 1 \right)}\;{\bf{z}}_{\left. w \right|i}^{\left( 2 \right)}\; \cdots {\bf{z}}_{\left. w \right|i}^{\left( U \right)}} \right]^T}$定义为
\[{\bf{z}}_{\left. w \right|i}^{\left( j \right)} = \left\{ \begin{array}{l}
s_w^{\left( i \right)}\;\;,\;\;\;\;\;\;\;\;\;\;\;\;if\;j = i\\
s_w^{\left( j \right)} - \tilde s_w^{\left( j \right)}\;\;,\;\;\;\;if\;j \ne i
\end{array} \right.\]
3)MMSE检测器
MMSE信道均衡
\[\hat s_w^{\left( i \right)} = {\bf{w}}_{\left. w \right|i}^H{{\bf{\hat y}}_{\left. w \right|i}} = {E_s}{\left( {{{\bf{h}}_{i,w}}} \right)^H}{\bf{A}}_{\left. w \right|i}^{ - 1}{{\bf{\hat y}}_{\left. w \right|i}}\]
其中,${\bf{A}}_{\left. w \right|i}^{ - 1} = {{\bf{H}}_w}{{\bf{\Lambda }}_{\left. w \right|i}}{\bf{H}}_w^H + {N_0}{{\bf{I}}_{B \times B}}$,${{\bf{\Lambda }}_{\left. w \right|i}} = E\left[ {{{\bf{z}}_{\left. w \right|i}}{{\left( {{{\bf{z}}_{\left. w \right|i}}} \right)}^H}} \right]\]$是对角矩阵,对角元
\[\lambda _{\left. w \right|i}^{\left( {j,j} \right)} = \left\{ \begin{array}{l}
{E_s}\;\;\;,\;\;\;\;\;\;\;\;if\;j = i\\
{\mathop{\rm var}} \left[ {s_w^{\left( j \right)}} \right],\;\;if\;j \ne i
\end{array} \right.\]
其中,${\mathop{\rm var}} \left[ {s_w^{\left( j \right)}} \right] = {N^{ - 1}}\sum\nolimits_{k = 1}^N {\left( {E\left[ {{{\left( {x_k^{\left( j \right)}} \right)}^2}} \right] - {{\left( {\tilde x_k^{\left( j \right)}} \right)}^2}} \right)}$以及
$E\left[ {{{\left( {x_k^{\left( j \right)}} \right)}^2}} \right] = \sum\nolimits_{a \in {\bf{\theta }}} {\Pr \left( {x_j^{\left( i \right)} = a} \right) \cdot {{\left| a \right|}^2}}$
DFT逆变换
{{\bf{\hat x}}^{\left( i \right)}} = F_N^H{{\bf{\hat s}}^{\left( i \right)}} = {\left[ {\hat x_1^{\left( i \right)}\;\hat x_2^{\left( i \right)} \cdots \hat x_N^{\left( i \right)}} \right]^T}
4)LLR计算
\hat x_t^{\left( i \right)} = {\mu _i}x_t^{\left( i \right)} + e_t^{\left( i \right)}
其中,${\mu _i}$为等效信道增益,$e_t^{\left( i \right)}$为均衡后噪声叠加干扰项(NPI),其方差为$\upsilon _i^2$
\[{\mu _i} = {N^{ - 1}}\sum\nolimits_{k = 1}^N {{\bf{w}}_{\left. w \right|i}^H{{\bf{h}}_{i,w}}} \]
\[\upsilon _i^2 = {E_s}{\mu _i} - {E_s}{\left| {{\mu _i}} \right|^2}\]
逐比特LLR为
\[\tilde L_{t,k}^{\left( i \right)} = \frac{1}{{\upsilon _i^2}}\left( {\mathop {\min }\limits_{a \in {\bf{\theta }}_k^0} \left| {\hat x_t^{\left( i \right)} - {\mu _i}a} \right| - \mathop {\min }\limits_{a \in {\bf{\theta }}_k^1} \left| {\hat x_t^{\left( i \right)} - {\mu _i}a} \right|} \right)\]