在某个xxxservice 里要持续读 /dev/sample_dev
节点。也就是在while
循环里面,先poll
是否可读,如果可读的话就去调用read
,如果不可读的话就继续调用poll
,如此循环。
但是,如果与 /dev/sample_dev
节点相关的设备已不再提供数据了(比如说设备拔掉)。那么每次调用poll
会timeout,如此循环,空耗CPU资源。
此时底层驱动可以给应用层返回特定的值告诉断开,xxxservice可以根据这个返回值break出while循环,这样就不会一直在while
循环。
在实现这个需求的过程中,学习到了poll
的相关用法,现总结如下。
在Ubuntu终端输入#man poll
就可以查看poll的用法了。
POLL(2) Linux Programmer's Manual POLL(2)
NAME
poll, ppoll - wait for some event on a file descriptor
SYNOPSIS
#include
int poll(struct pollfd *fds, nfds_t nfds, int timeout);
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include
int ppoll(struct pollfd *fds, nfds_t nfds,
const struct timespec *timeout_ts, const sigset_t *sigmask);
DESCRIPTION
poll() performs a similar task to select(2): it waits for one of a set of file descriptors to become ready to perform I/O.
The set of file descriptors to be monitored is specified in the fds argument, which is an array of structures of the follow‐
ing form:
struct pollfd {
int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */
};
The caller should specify the number of items in the fds array in nfds.
The field fd contains a file descriptor for an open file. If this field is negative, then the corresponding events field is
ignored and the revents field returns zero. (This provides an easy way of ignoring a file descriptor for a single poll()
call: simply negate the fd field.)
The field events is an input parameter, a bit mask specifying the events the application is interested in for the file
descriptor fd. If this field is specified as zero, then all events are ignored for fd and revents returns zero.
The field revents is an output parameter, filled by the kernel with the events that actually occurred. The bits returned in
revents can include any of those specified in events, or one of the values POLLERR, POLLHUP, or POLLNVAL. (These three bits
are meaningless in the events field, and will be set in the revents field whenever the corresponding condition is true.)
If none of the events requested (and no error) has occurred for any of the file descriptors, then poll() blocks until one of
the events occurs.
The timeout argument specifies the number of milliseconds that poll() should block waiting for a file descriptor to become
ready. This interval will be rounded up to the system clock granularity, and kernel scheduling delays mean that the block‐
ing interval may overrun by a small amount. Specifying a negative value in timeout means an infinite timeout. Specifying a
timeout of zero causes poll() to return immediately, even if no file descriptors are ready.
The bits that may be set/returned in events and revents are defined in :
POLLIN There is data to read.
POLLPRI
There is urgent data to read (e.g., out-of-band data on TCP socket; pseudoterminal master in packet mode has
seen state change in slave).
POLLOUT
Writing now will not block.
POLLRDHUP (since Linux 2.6.17)
Stream socket peer closed connection, or shut down writing half of connection. The _GNU_SOURCE feature test
macro must be defined (before including any header files) in order to obtain this definition.
POLLERR
Error condition (output only).
POLLHUP
Hang up (output only).
POLLNVAL
Invalid request: fd not open (output only).
When compiling with _XOPEN_SOURCE defined, one also has the following, which convey no further information beyond the bits
listed above:
POLLRDNORM
Equivalent to POLLIN.
POLLRDBAND
Priority band data can be read (generally unused on Linux).
POLLWRNORM
Equivalent to POLLOUT.
POLLWRBAND
Priority data may be written.
Linux also knows about, but does not use POLLMSG.
ppoll()
The relationship between poll() and ppoll() is analogous to the relationship between select(2) and pselect(2): like pse‐
lect(2), ppoll() allows an application to safely wait until either a file descriptor becomes ready or until a signal is
caught.
Other than the difference in the precision of the timeout argument, the following ppoll() call:
ready = ppoll(&fds, nfds, timeout_ts, &sigmask);
is equivalent to atomically executing the following calls:
sigset_t origmask;
int timeout;
timeout = (timeout_ts == NULL) ? -1 :
(timeout_ts.tv_sec * 1000 + timeout_ts.tv_nsec / 1000000);
sigprocmask(SIG_SETMASK, &sigmask, &origmask);
ready = poll(&fds, nfds, timeout);
sigprocmask(SIG_SETMASK, &origmask, NULL);
See the description of pselect(2) for an explanation of why ppoll() is necessary.
If the sigmask argument is specified as NULL, then no signal mask manipulation is performed (and thus ppoll() differs from
poll() only in the precision of the timeout argument).
The timeout_ts argument specifies an upper limit on the amount of time that ppoll() will block. This argument is a pointer
to a structure of the following form:
struct timespec {
long tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */
};
If timeout_ts is specified as NULL, then ppoll() can block indefinitely.
RETURN VALUE
On success, a positive number is returned; this is the number of structures which have nonzero revents fields (in other
words, those descriptors with events or errors reported). A value of 0 indicates that the call timed out and no file
descriptors were ready. On error, -1 is returned, and errno is set appropriately.
ERRORS
EFAULT The array given as argument was not contained in the calling program's address space.
EINTR A signal occurred before any requested event; see signal(7).
EINVAL The nfds value exceeds the RLIMIT_NOFILE value.
ENOMEM There was no space to allocate file descriptor tables.
VERSIONS
The poll() system call was introduced in Linux 2.1.23. On older kernels that lack this system call, the glibc (and the old
Linux libc) poll() wrapper function provides emulation using select(2).
The ppoll() system call was added to Linux in kernel 2.6.16. The ppoll() library call was added in glibc 2.4.
CONFORMING TO
poll() conforms to POSIX.1-2001. ppoll() is Linux-specific.
NOTES
Some implementations define the nonstandard constant INFTIM with the value -1 for use as a timeout for poll(). This con‐
stant is not provided in glibc.
For a discussion of what may happen if a file descriptor being monitored by poll() is closed in another thread, see
select(2).
Linux notes
The Linux ppoll() system call modifies its timeout_ts argument. However, the glibc wrapper function hides this behavior by
using a local variable for the timeout argument that is passed to the system call. Thus, the glibc ppoll() function does
not modify its timeout_ts argument.
BUGS
See the discussion of spurious readiness notifications under the BUGS section of select(2).
SEE ALSO
restart_syscall(2), select(2), select_tut(2), time(7)
COLOPHON
This page is part of release 3.54 of the Linux man-pages project. A description of the project, and information about
reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.
Linux 2013-09-04 POLL(2)
该函数的声明如下:
#include
struct pollfd {
int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */
};
int poll(struct pollfd *fds, nfds_t nfds, int timeout);
struct pollfd *fds
poll()
就是等待一个文件描述集合变为可读或可写。该文件描述集合由struct pollfd
来表示。
fd
为一个已open的文件句柄,即想要侦听的文件;events
是输入的参数,需要自己指定想要侦听fd的哪个事件,比如说常见的POLLIN| POLLRDNORM
来表示侦听可读;revents
是输出的参数,由内核来填充事件。当poll()函数返回正数时,此时也要判断成员revents的事件以此来做下一步的动作。 POLLERR/ POLLHUP/ POLLNVAL
这三个事件只会在 revents
中出现,不会在events
中出现。nfds_t nfds
nfds
指定所要侦听的文件个数。
int timeout
timeout
指定poll()
需要block多少ms,如果发生timeout,那么poll()的返回值为0。
poll()
函数有三种返回值:
所以说,当返回值>=0的时候,我们有必要去查看一下revents
里面的事件,看看当前的情况。
uapi/asm-generic/poll.h
#ifndef2 __ASM_GENERIC_POLL_H
#define __ASM_GENERIC_POLL_H
/* These are specified by iBCS2 */
#define POLLIN 0x0001
#define POLLPRI 0x0002
#define POLLOUT 0x0004
#define POLLERR 0x0008
#define POLLHUP 0x0010
#define POLLNVAL 0x0020
/* The rest seem to be more-or-less nonstandard. Check them! */
#define POLLRDNORM 0x0040
#define POLLRDBAND 0x0080
#ifndef POLLWRNORM
#define POLLWRNORM 0x0100
#endif
#ifndef POLLWRBAND
#define POLLWRBAND 0x0200
#endif
#ifndef POLLMSG
#define POLLMSG 0x0400
#endif
#ifndef POLLREMOVE
#define POLLREMOVE 0x1000
#endif
#ifndef POLLRDHUP
#define POLLRDHUP 0x2000
#endif
#define POLLFREE 0x4000 /* currently only for epoll */
#define POLL_BUSY_LOOP 0x8000
struct pollfd {
int fd;
short events;
short revents;
};
#endif /* __ASM_GENERIC_POLL_H */
还是以sample_dev
读写为例,详见:http://blog.csdn.net/encourage2011/article/details/52940087。假设我设备拔掉的时候,会调用unbind
,此时我们去设置disconnected
成员,用来标记设备拔掉。如下:
static int sample_unbind()
{
sample_dev->disconnected = 1;
}
static int sample_bind()
{
sample_dev->disconnected = 0;
}
接下来驱动的所有操作都要围绕 sample_dev->disconnected
来做。当调用read/write
,如果已经disconnected,那么需要直接返回-ENODEV
,告诉应用层表示设备断开了。如果是poll
,那么需要返回 POLLERR | POLLHUP
来告诉应用层表示设备断开。修改之后的函数如下:
static int sample_write(struct file * file, const char __user * buf, size_t count, loff_t *f_pos)
{
int ret = count;
if (sample_dev->disconnected)
return -ENODEV;
sample_dbg("[sample] %s line = %d: count = %d, f_pos = %d\n", __func__, __LINE__, count, *f_pos);
if (copy_from_user(sample_dev->buf+*f_pos, buf, count)) {
sample_dbg("[sample] copy from user error\n");
ret = -EFAULT;
}
sample_dbg("[sample] write:buf = %s\n", sample_dev->buf+*f_pos);
// 写完之后可以读,但不能写,唤醒读
sample_dev->completed_in_req = 1;
sample_dev->completed_out_req = 0;
wake_up_interruptible(&sample_dev->read_queue);
return ret;
}
static int sample_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
{
int ret = count;
if (sample_dev->disconnected)
return -ENODEV;
sample_dbg("[sample] %s line = %d: count = %d, f_pos = %d\n", __func__, __LINE__, count, *f_pos);
sample_dbg("[sample] read:buf = %s\n", sample_dev->buf);
if (copy_to_user(buf, sample_dev->buf, count)) {
ret = -EFAULT;
sample_dbg("[sample] copy to user error\n");
}
// 读完之后可以写,但不能读,唤醒写
sample_dev->completed_in_req = 0;
sample_dev->completed_out_req = 1;
wake_up_interruptible(&sample_dev->write_queue);
return ret;
}
long sample_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
if (sample_dev->disconnected)
return -ENODEV;
switch(cmd) {
case IOC_SAMPLE_CMD0:
break;
case IOC_SAMPLE_CMD1:
break;
default:
break;
}
return 0;
}
static unsigned int sample_poll(struct file *fd, poll_table *wait)
{
unsigned int ret = 0;
sample_dbg("[sample] %s line = %d\n", __func__, __LINE__);
//if (sample_dev->disconnected)
// return -ENODEV;
if (sample_dev->disconnected) {
ret = POLLERR | POLLHUP;
return ret;
}
poll_wait(fd, &sample_dev->read_queue, wait);
poll_wait(fd, &sample_dev->write_queue, wait);
if(sample_dev->completed_out_req)
ret |= POLLOUT | POLLWRNORM;
if (sample_dev->completed_in_req)
ret |= POLLIN | POLLRDNORM;
return ret;
}
注意,这里的poll
无法直接返回 –ENODEV
,测试发现,当在驱动中人为设置poll
每次返回-ENODEV
,应用层都无法读到这个返回值,每次都是timeout,返回值为0。具体原因还不清楚。
使用poll()
的时候,必须检查 Events.revents
的值。不能单纯的判断返回值。
// sample_test.c
#define FILE_PATH "/dev/sample_dev"
int main(int argc, char **argv)
{
int ret = 0;
int fd;
char *wr_buf = "aaaaa";
char rd_buf[10];
struct pollfd Events;
int revents;
memset(&Events, 0 ,sizeof(Events));
fd = open(FILE_PATH, O_RDWR | O_NDELAY);
if (fd < 0)
{
printf("[sample_test] open %s failed!!!!\n", FILE_PATH);
return -1;
}
Events.fd = fd;
Events.events = POLLOUT | POLLWRNORM;
ret = poll(&Events, 1, 1000);
if (ret < 0) {
printf("[sample_test] write POLL ERROR");
} else if (ret == 0) {
printf("[sample_test] write POLL timeout");
} else {
ret = write(fd, wr_buf, sizeof(wr_buf));
}
Events.fd = fd;
Events.events = POLLIN | POLLRDNORM;
while (1) {
ret = poll(&Events, 1, 1000);
if (ret < 0) {
printf("[sample_test] read POLL ERROR, break\n");
break;
} else if (ret == 0) {
printf("[sample_test] read POLL timeout, continue\n");
continue;
} else {
revents = Events.revents;
if ((revents == POLLIN) || (revents == POLLRDNORM)) {
ret = read(fd, rd_buf, 4);
if (ret < 0) {
printf("[sample_test] read error, error:%s, errno = %d\n", strerr(errno), errno);
if (errno == ENODEV) {
printf("[sample_test] device disconnect, break\n");
break;
}
else {
break;
}
}
}
else if ((revents == POLLERR) || (revents == POLLHUP)) {
printf("[sample_test] device error, break\n");
break;
}
}
}
close(fd);
return ret;
}