- nosql数据库技术与应用知识点
皆过客,揽星河
NoSQLnosql数据库大数据数据分析数据结构非关系型数据库
Nosql知识回顾大数据处理流程数据采集(flume、爬虫、传感器)数据存储(本门课程NoSQL所处的阶段)Hdfs、MongoDB、HBase等数据清洗(入仓)Hive等数据处理、分析(Spark、Flink等)数据可视化数据挖掘、机器学习应用(Python、SparkMLlib等)大数据时代存储的挑战(三高)高并发(同一时间很多人访问)高扩展(要求随时根据需求扩展存储)高效率(要求读写速度快)
- 浅谈MapReduce
Android路上的人
Hadoop分布式计算mapreduce分布式框架hadoop
从今天开始,本人将会开始对另一项技术的学习,就是当下炙手可热的Hadoop分布式就算技术。目前国内外的诸多公司因为业务发展的需要,都纷纷用了此平台。国内的比如BAT啦,国外的在这方面走的更加的前面,就不一一列举了。但是Hadoop作为Apache的一个开源项目,在下面有非常多的子项目,比如HDFS,HBase,Hive,Pig,等等,要先彻底学习整个Hadoop,仅仅凭借一个的力量,是远远不够的。
- Hadoop
傲雪凌霜,松柏长青
后端大数据hadoop大数据分布式
ApacheHadoop是一个开源的分布式计算框架,主要用于处理海量数据集。它具有高度的可扩展性、容错性和高效的分布式存储与计算能力。Hadoop核心由四个主要模块组成,分别是HDFS(分布式文件系统)、MapReduce(分布式计算框架)、YARN(资源管理)和HadoopCommon(公共工具和库)。1.HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生
- Hadoop架构
henan程序媛
hadoop大数据分布式
一、案列分析1.1案例概述现在已经进入了大数据(BigData)时代,数以万计用户的互联网服务时时刻刻都在产生大量的交互,要处理的数据量实在是太大了,以传统的数据库技术等其他手段根本无法应对数据处理的实时性、有效性的需求。HDFS顺应时代出现,在解决大数据存储和计算方面有很多的优势。1.2案列前置知识点1.什么是大数据大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的大量数据集合,
- hbase介绍
CrazyL-
云计算+大数据hbase
hbase是一个分布式的、多版本的、面向列的开源数据库hbase利用hadoophdfs作为其文件存储系统,提供高可靠性、高性能、列存储、可伸缩、实时读写、适用于非结构化数据存储的数据库系统hbase利用hadoopmapreduce来处理hbase、中的海量数据hbase利用zookeeper作为分布式系统服务特点:数据量大:一个表可以有上亿行,上百万列(列多时,插入变慢)面向列:面向列(族)的
- HBase介绍
mingyu1016
数据库
概述HBase是一个分布式的、面向列的开源数据库,源于google的一篇论文《bigtable:一个结构化数据的分布式存储系统》。HBase是GoogleBigtable的开源实现,它利用HadoopHDFS作为其文件存储系统,利用HadoopMapReduce来处理HBase中的海量数据,利用Zookeeper作为协同服务。HBase的表结构HBase以表的形式存储数据。表有行和列组成。列划分为
- 【HDFS】【HDFS架构】【HDFS Architecture】【架构】
资源存储库
hdfs架构hadoop
目录1Introduction介绍2AssumptionsandGoals假设和目标HardwareFailure硬件故障StreamingDataAccess流式数据访问LargeDataSets大型数据集SimpleCoherencyModel简单凝聚力模型“MovingComputationisCheaperthanMovingData”“移动计算比移动数据更便宜”PortabilityAc
- Hadoop学习第三课(HDFS架构--读、写流程)
小小程序员呀~
数据库hadoop架构bigdata
1.块概念举例1:一桶水1000ml,瓶子的规格100ml=>需要10个瓶子装完一桶水1010ml,瓶子的规格100ml=>需要11个瓶子装完一桶水1010ml,瓶子的规格200ml=>需要6个瓶子装完块的大小规格,只要是需要存储,哪怕一点点,也是要占用一个块的块大小的参数:dfs.blocksize官方默认的大小为128M官网:https://hadoop.apache.org/docs/r3.
- hdfs启动流程
weixin_44352020
hadoophdfshadoop
Namenode1.init()namenode初始化,执行加载配置文件等操作2.loadFsImage()开始加载元数据将FsImage护额徐为目录树,保存在内存中FsImage中主要包含了问价你和数据块的对应关系3.loadEditlog()加载Editlog,将Editlog中记录的元数据修改应用到内存中;4.saveCheckpoint()将内存中最新的目录树持久化为新的FsImage到磁
- hdfs开机启动流程
鸭梨山大哎
hadoophdfs
第一步:加载name目录下最新的那个fsimage_xxx019文件,将里面存储的元数据(目录树结构)维护到内存中,但是还不是关机前的状态第二步:将关机前的最后使用的edits_inprogress_xxxx0160进行重命名edits_0000000000000000160-0000000000000000169操作,然后生成一个最新的edits_inprogress_xxx170文件,并修改s
- hadoop启动HDFS命令
m0_67401228
java搜索引擎linux后端
启动命令:/hadoop/sbin/start-dfs.sh停止命令:/hadoop/sbin/stop-dfs.sh
- 【HDFS主从集群】存在两个独立的问题和解决方案
流辉fglow
大数据#HDFShdfsjavahadoop大数据分布式学习
主从集群存在两个独立的问题和解决方案单点“主”的两个独立的问题以下是解决方案HA高可用方案:解决单点故障导致集群整体不可用问题Federation联邦机制:解决NN压力过大问题总结一般很多技术都是主从结构(最简单的结构)优点:结构相对简单,主与从协作“主”是单点,好处有,缺点也有好处:单点NameNode,数据一致性好掌握 因为一个人管,说一不二的单点“主”的两个独立的问题关键词:独立:两套独立
- 【HDFS】角色的架构设计
流辉fglow
#HDFS大数据hdfshadoop大数据学习分布式
HDFS角色的架构设计前置知识:Windows与Linux文件系统的差异HDFS中的角色及功能HDFS的架构NameNodeDataNodeNameNode元数据的持久化说明:/表示两个词是同一语义,方便你理解的前置知识:Windows与Linux文件系统的差异Windows&LInux虽然都有硬盘/分区、目录,但感受很不同的是:Windows:有很强的分区概念,要先通过不同的“盘符”去找文件在命
- HDFS的启动过程
ffbc2020
HDFSHDFS
HDFS的启动过程HDFS的启动过程分为四个阶段:第一阶段:NameNode读取包含元数据信息的fsimage文件,并加载到内存;第二阶段:NameNode读取体现HDFS最新状态的edits日志文件,并加载到内存中第三阶段:生成检查点,SecondaryNameNode将edits日志中的信息合并到fsimage文件中第四阶段:进入安全模式,检查数据块的完整性HDFS的安全模式什么是安全模式安全
- 集群hdfs启动
sxu~源
hdfshadoopbigdata
1)各个模块分开启动/停止(配置ssh是前提)常用(1)整体启动/停止HDFSstart-dfs.sh/stop-dfs.sh(2)整体启动/停止YARNstart-yarn.sh/stop-yarn.sh2)各个服务组件逐一启动/停止(1)分别启动/停止HDFS组件hdfs--daemonstart/stopnamenode/datanode/secondarynamenode(2)启动/停止Y
- spark常用命令
我是浣熊的微笑
spark
查看报错日志:yarnlogsapplicationIDspark2-submit--masteryarn--classcom.hik.ReadHdfstest-1.0-SNAPSHOT.jar进入$SPARK_HOME目录,输入bin/spark-submit--help可以得到该命令的使用帮助。hadoop@wyy:/app/hadoop/spark100$bin/spark-submit--
- 编程常用命令总结
Yellow0523
LinuxBigData大数据
编程命令大全1.软件环境变量的配置JavaScalaSparkHadoopHive2.大数据软件常用命令Spark基本命令Spark-SQL命令Hive命令HDFS命令YARN命令Zookeeper命令kafka命令Hibench命令MySQL命令3.Linux常用命令Git命令conda命令pip命令查看Linux系统的详细信息查看Linux系统架构(X86还是ARM,两种方法都可)端口号命令L
- Hadoop常见面试题整理及解答
叶青舟
Linuxhdfs大数据hadooplinux
Hadoop常见面试题整理及解答一、基础知识篇:1.把数据仓库从传统关系型数据库转到hadoop有什么优势?答:(1)关系型数据库成本高,且存储空间有限。而Hadoop使用较为廉价的机器存储数据,且Hadoop可以将大量机器构建成一个集群,并在集群中使用HDFS文件系统统一管理数据,极大的提高了数据的存储及处理能力。(2)关系型数据库仅支持标准结构化数据格式,Hadoop不仅支持标准结构化数据格式
- linux启动优化 内核裁剪详细说明(2)
keep study
linux
第一部分Linux内核裁减(1)安装新内核:i)将新内核copy到/usr/src下并解压:#tar-zxvflinux-2.6.38.4.tar.gzii)将名为linux的符号链接删掉,这是旧版本内核的符号链接.#ln-slinux-2.6.38.4linux(2)设置内核.#cd/usr/src/linux#makemrproper-----删除不必要的文件和目录.#makemenuconf
- hive表格统计信息不准确
weixin_41956627
hivehivehadoop数据仓库
问题描述有个hive分区表,orc存储格式,有个分区,查询selectcount(1)fromtablewheredt='yyyyMMdd'结果是0,但查询select*fromtablewheredt='yyyyMMdd'又能查到数据,去hdfs对应目录下查看,也能看到有数据文件解决执行如下sqlANALYZETABLEdb.table1PARTITION(dt='20240908')COMPU
- 人生苦短我用Python pandas文件格式转换
程序喵D
人生苦短我用Pythonpythonpandas
人生苦短我用Pythonpandas文件格式转换前言示例1excel与csv互转常用格式的方法FlatfileExcelJSONXML示例2常用格式转换简要需求依赖export方法main方法附其它格式的方法HTMLPicklingClipboardLatexHDFStore:PyTables(HDF5)FeatherParquetORCSASSPSSSQLGoogleBigQuerySTATA前
- Android性能优化之启动速度优化
Just_Paranoid
Androidandroid性能优化ProfilerSystrace
Android性能优化之启动速度优化1.App启动流程2.测试启动耗时的方法3.测试启动耗时的分析工具3.1AndroidProfiler3.2TraceView3.3Systrace4.如何优化启动时间4.1.减少DEX文件大小4.2优化Application初始化4.3优化Activity加载4.4使用启动引导页4.5使用启动优化库5.代码分析示例启动速度是衡量Android应用性能的重要指标
- 深入解析HDFS:定义、架构、原理、应用场景及常用命令
CloudJourney
hdfs架构hadoop
引言Hadoop分布式文件系统(HDFS,HadoopDistributedFileSystem)是Hadoop框架的核心组件之一,它提供了高可靠性、高可用性和高吞吐量的大规模数据存储和管理能力。本文将从HDFS的定义、架构、工作原理、应用场景以及常用命令等多个方面进行详细探讨,帮助读者全面深入地了解HDFS。1.HDFS的定义1.1什么是HDFSHDFS是Hadoop生态系统中的一个分布式文件系
- 解决flume在抽取不断产生的日志文件时,hdfs上出现很多小文件的问题
lzhlizihang
flumehdfs大数据
问题在使用flume时,需要编写conf文件,然后执行,明明sinks已经指定了roll的三个参数:a1.sinks.k1.hdfs.rollInterval=0(根据写入时间来切割)a1.sinks.k1.hdfs.rollSize=0(根据写入的文件大小来切割)a1.sinks.k1.hdfs.rollCount=0(根据Event数量来切割)其中0代表不根据其属性来切割文件但是hdfs上还会
- Hadoop的搭建流程
lzhlizihang
hadoop大数据分布式
文章目录一、配置IP二、配置主机名三、配置主机映射四、关闭防火墙五、配置免密六、安装jdk1、第一步:2、第二步:3、第三步:4、第四步:5、第五步:七、安装hadoop1、上传2、解压3、重命名4、开始配置环境变量5、刷新配置文件6、验证hadoop命令是否可以识别八、全分布搭建7、修改配置文件core-site.xml8、修改配置文件hdfs-site.xml9、修改配置文件hadoop-en
- hive搭建 -----内嵌模式和本地模式
lzhlizihang
hivehadoop
文章目录一、内嵌模式(使用较少)1、上传、解压、重命名2、配置环境变量3、配置conf下的hive-env.sh4、修改conf下的hive-site.xml5、启动hadoop集群6、给hdfs创建文件夹7、修改hive-site.xml中的非法字符8、初始化元数据9、测试是否成功10、内嵌模式的缺点二、本地模式(最常用)1、检查mysql是否正常2、上传、解压、重命名3、配置环境变量4、修改c
- 详解 JuiceFS sync 新功能,选择性同步增强与多场景性能优化
Juicedata
性能优化
JuiceFSsync是一个强大的数据同步工具,支持在多种存储系统之间进行并发同步或迁移数据,包括对象存储、JuiceFS、NFS、HDFS、本地文件系统等。此外,该工具还提供了增量同步、模式匹配(类似Rsync)、分布式同步等高级功能。在最新的v1.2版本中,针对Juicesync我们引入了多项新功能,并对多个场景进行了性能优化,以提高用户在处理大目录和复杂迁移时的数据同步效率。新增功能增强选择
- Hadoop HDFS中的NameNode、SecondaryNameNode和DataNode
BigDataMLApplication
大数据hadoophadoophdfs大数据
HadoopHDFS中的NameNode、SecondaryNameNode和DataNode目录1.定义2.主要作用3.官方链接1.定义在HadoopHDFS(Hadoop分布式文件系统)中,有三个关键的组件:NameNode、SecondaryNameNode和DataNode。NameNodeNameNode是HDFS的主要组件之一,负责管理文件系统的命名空间、存储文件的元数据信息以及处理客
- 【Hadoop|HDFS篇】NameNode和SecondaryNameNode
Vez'nan的幸福生活
hadoophdfs大数据
1.NN和2NN的工作机制思考:NameNode中的元数据是存储在哪里的?首先,我们做个假设,如果存储在NameNode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低。因此,元数据需要存放在内存中。但如果只存在内存中,一旦断电,元数据丢失,整个集群就无法工作了。因此产生在磁盘中备份元数据的Fslmage。这样又会带来新的问题,当在内存中的元数据更新时,如果同时更新FsIm
- Hbase的简单使用示例
傲雪凌霜,松柏长青
后端大数据hbase数据库大数据
HBase是基于HadoopHDFS构建的分布式、列式存储的NoSQL数据库,适用于存储和检索超大规模的非结构化数据。它支持随机读写,并且能够处理PB级数据。HBase通常用于实时数据存取场景,与Hadoop生态紧密集成。使用HBase的Java示例前置条件HBase集群:确保HBase集群已经安装并启动。如果没有,你可以通过本地伪分布模式或Docker来运行HBase。Hadoop配置:HBas
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不