Eureka服务监督(客户端缓存刷新、心跳监测)定时任务亮点——自动调节间隔的周期性任务

TimedSupervisorTask类(自动调节间隔的周期性任务

Eureka中客户端缓存刷新、心跳监测,调远程服务端接口操作的定时任务,调远程网络不确定性导致定时任务执行不确定性,Eureka设计了一个自动调节间隔的周期性任务!!!通过一个线程类的run方法的finally中再次调用该线程实现

1、该定时任务的启动代码:

DiscoveryClient类里的initScheduledTasks()方法:该方法有两处使用了该定时任务线程类。
    private void initScheduledTasks() {
        if (clientConfig.shouldFetchRegistry()) {
            // registry cache refresh timer
            int registryFetchIntervalSeconds = clientConfig.getRegistryFetchIntervalSeconds();
            int expBackOffBound = clientConfig.getCacheRefreshExecutorExponentialBackOffBound();
            scheduler.schedule(
                    new TimedSupervisorTask(
                            "cacheRefresh",
                            scheduler,
                            cacheRefreshExecutor,
                            registryFetchIntervalSeconds,
                            TimeUnit.SECONDS,
                            expBackOffBound,
                            new CacheRefreshThread()//该线程执行更新的具体逻辑
                    ),
                    registryFetchIntervalSeconds, TimeUnit.SECONDS);
        }

        if (clientConfig.shouldRegisterWithEureka()) {
            int renewalIntervalInSecs = instanceInfo.getLeaseInfo().getRenewalIntervalInSecs();
            int expBackOffBound = clientConfig.getHeartbeatExecutorExponentialBackOffBound();
            logger.info("Starting heartbeat executor: " + "renew interval is: {}", renewalIntervalInSecs);

            // Heartbeat timer
            scheduler.schedule(
                    new TimedSupervisorTask(
                            "heartbeat",
                            scheduler,
                            heartbeatExecutor,
                            renewalIntervalInSecs,
                            TimeUnit.SECONDS,
                            expBackOffBound,
                            new HeartbeatThread()//该线程执行续约的具体逻辑
                    ),
                    renewalIntervalInSecs, TimeUnit.SECONDS);
    …………省略
    }

上述代码中,scheduler是ScheduledExecutorService接口的实现:因为两处使用,所以创建了2个线程的线程池。且在new子线程的时候将scheduler传入

    scheduler = Executors.newScheduledThreadPool(2,
                    new ThreadFactoryBuilder()
                            .setNameFormat("DiscoveryClient-%d")
                            .setDaemon(true)
                            .build());

其schedule方法的官方文档如下所示:

Eureka服务监督(客户端缓存刷新、心跳监测)定时任务亮点——自动调节间隔的周期性任务_第1张图片

创建了一个一次性动作,那是怎么实现循环定时执行的?答案就在TimedSupervisorTask线程类的run方法里》

2、线程类的实现代码:

亮点就在run方法的finally里的

scheduler.schedule(this, delay.get(), TimeUnit.MILLISECONDS);
package com.netflix.discovery;

import java.util.TimerTask;
import java.util.concurrent.Future;
import java.util.concurrent.RejectedExecutionException;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.concurrent.atomic.AtomicLong;

import com.netflix.servo.monitor.Counter;
import com.netflix.servo.monitor.LongGauge;
import com.netflix.servo.monitor.MonitorConfig;
import com.netflix.servo.monitor.Monitors;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * A supervisor task that schedules subtasks while enforce a timeout.
 * Wrapped subtasks must be thread safe.
 *
 * @author David Qiang Liu
 */
public class TimedSupervisorTask extends TimerTask {
    private static final Logger logger = LoggerFactory.getLogger(TimedSupervisorTask.class);

    private final Counter timeoutCounter;
    private final Counter rejectedCounter;
    private final Counter throwableCounter;
    private final LongGauge threadPoolLevelGauge;

    private final ScheduledExecutorService scheduler;
    private final ThreadPoolExecutor executor;
    private final long timeoutMillis;
    private final Runnable task;

    private final AtomicLong delay;
    private final long maxDelay;

    public TimedSupervisorTask(String name, ScheduledExecutorService scheduler, ThreadPoolExecutor executor,
                               int timeout, TimeUnit timeUnit, int expBackOffBound, Runnable task) {
        this.scheduler = scheduler;
        this.executor = executor;
        this.timeoutMillis = timeUnit.toMillis(timeout);
        this.task = task;
        this.delay = new AtomicLong(timeoutMillis);
        this.maxDelay = timeoutMillis * expBackOffBound;

        // Initialize the counters and register.
        timeoutCounter = Monitors.newCounter("timeouts");
        rejectedCounter = Monitors.newCounter("rejectedExecutions");
        throwableCounter = Monitors.newCounter("throwables");
        threadPoolLevelGauge = new LongGauge(MonitorConfig.builder("threadPoolUsed").build());
        Monitors.registerObject(name, this);
    }

    @Override
    public void run() {
        Future future = null;
        try {
            //使用Future,可以设定子线程的超时时间,这样当前线程就不用无限等待了
            future = executor.submit(task);
            threadPoolLevelGauge.set((long) executor.getActiveCount());
            //指定等待子线程的最长时间
            future.get(timeoutMillis, TimeUnit.MILLISECONDS);  // block until done or timeout
            //delay是个关键变量,后面会用到,
            //这里每次执行任务成功都会将delay重置,即时间间隔还原到最初值。
            delay.set(timeoutMillis);
            threadPoolLevelGauge.set((long) executor.getActiveCount());
        } catch (TimeoutException e) {
            logger.warn("task supervisor timed out", e);
            timeoutCounter.increment();

            long currentDelay = delay.get();
            //任务线程超时的时候,就把delay变量翻倍,但不会超过外部调用时设定的最大延时时间
            long newDelay = Math.min(maxDelay, currentDelay * 2);
            //设置为最新的值,考虑到多线程,所以用了CAS
            delay.compareAndSet(currentDelay, newDelay);

        } catch (RejectedExecutionException e) {
            if (executor.isShutdown() || scheduler.isShutdown()) {
                logger.warn("task supervisor shutting down, reject the task", e);
            } else {
                logger.warn("task supervisor rejected the task", e);
            }

            rejectedCounter.increment();
        } catch (Throwable e) {
            //一旦线程池的阻塞队列中放满了待处理任务,触发了拒绝策略,就会将调度器停掉
            if (executor.isShutdown() || scheduler.isShutdown()) {
                logger.warn("task supervisor shutting down, can't accept the task");
            } else {
                logger.warn("task supervisor threw an exception", e);
            }

            throwableCounter.increment();
        } finally {
            //这里任务要么执行完毕,要么发生异常,都用cancel方法来清理任务;
            if (future != null) {
                future.cancel(true);
            }

            //只要调度器没有停止,就在指定等待时间之后再执行一次同样的任务
            if (!scheduler.isShutdown()) {
//假设外部调用时传入的超时时间为30秒(构造方法的入参timeout),最大间隔时间为50秒(构造方法的入参expBac kOffBound) 
//如果最近一次任务没有超时,那么就在30秒后开始新任务,
//如果最近一次任务超时了,那么就在50秒后开始新任务(异常处理中有个乘以二的操作,乘以二后的60秒超过了最大 间隔50秒)
                // TODO 亮点所在!!!再次调用。
                scheduler.schedule(this, delay.get(), TimeUnit.MILLISECONDS);
            }
        }
    }
}

TimerTask是Java的util包中Runnable的实现类:

public abstract class TimerTask implements Runnable {

真相就在上面的最后一行代码中:scheduler.schedule(this, delay.get(), TimeUnit.MILLISECONDS):执行完任务后,会再次调用schedule方法,在指定的时间之后执行一次相同的任务,这个间隔时间和最近一次任务是否超时有关,如果超时了间隔时间就会变大。

源码精髓:
从整体上看,TimedSupervisorTask是固定间隔的周期性任务,一旦遇到超时就会将下一个周期的间隔时间调大,如果连续超时,那么每次间隔时间都会增大一倍,一直到达外部参数设定的上限为止,一旦新任务不再超时,间隔时间又会自动恢复为初始值,另外还有CAS来控制多线程同步,这些是我们看源码可以学习到的设计技巧。

 

 

 

你可能感兴趣的:(Java独立技术点)