Java多线程——FutureTask+ExecutorService

1.Java并发编程:Callable、Future和FutureTask

创建线程的2种方式,一种是直接继承Thread,另外一种就是实现Runnable接口。

这2种方式都有一个缺陷就是:在执行完任务之后无法获取执行结果。

如果需要获取执行结果,就必须通过共享变量或者使用线程通信的方式来达到效果,这样使用起来就比较麻烦。

而自从Java 1.5开始,就提供了Callable和Future,通过它们可以在任务执行完毕之后得到任务执行结果。

今天我们就来讨论一下Callable、Future和FutureTask三个类的使用方法。

一.Callable与Runnable

先说一下java.lang.Runnable吧,它是一个接口,在它里面只声明了一个run()方法:

public interface Runnable {
    public abstract void run();
}

由于run()方法返回值为void类型,所以在执行完任务之后无法返回任何结果。

Callable位于java.util.concurrent包下,它也是一个接口,在它里面也只声明了一个方法,只不过这个方法叫做call():

public interface Callable {
    V call() throws Exception;
}

可以看到,这是一个泛型接口,call()函数返回的类型就是传递进来的V类型。

那么怎么使用Callable呢?一般情况下是配合ExecutorService来使用的,在ExecutorService接口中声明了若干个submit方法的重载版本:

 Future submit(Callable task);
 Future submit(Runnable task, T result);
Future submit(Runnable task);

第一个submit方法里面的参数类型就是Callable。

暂时只需要知道Callable一般是和ExecutorService配合来使用的,具体的使用方法讲在后面讲述。

一般情况下我们使用第一个submit方法和第三个submit方法,第二个submit方法很少使用。

二.Future

  Future就是对于具体的Runnable或者Callable任务的执行结果进行取消、查询是否完成、获取结果。必要时可以通过get方法获取执行结果,该方法会阻塞直到任务返回结果。

  Future类位于java.util.concurrent包下,它是一个接口:

public interface Future {
    boolean cancel(boolean mayInterruptIfRunning);
    boolean isCancelled();
    boolean isDone();
    V get() throws InterruptedException, ExecutionException;
    V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}

在Future接口中声明了5个方法,下面依次解释每个方法的作用:

  • cancel方法用来取消任务,如果取消任务成功则返回true,如果取消任务失败则返回false。参数mayInterruptIfRunning表示是否允许取消正在执行却没有执行完毕的任务,如果设置true,则表示可以取消正在执行过程中的任务。如果任务已经完成,则无论mayInterruptIfRunning为true还是false,此方法肯定返回false,即如果取消已经完成的任务会返回false;如果任务正在执行,若mayInterruptIfRunning设置为true,则返回true,若mayInterruptIfRunning设置为false,则返回false;如果任务还没有执行,则无论mayInterruptIfRunning为true还是false,肯定返回true。
  • isCancelled方法表示任务是否被取消成功,如果在任务正常完成前被取消成功,则返回 true。
  • isDone方法表示任务是否已经完成,若任务完成,则返回true;
  • get()方法用来获取执行结果,这个方法会产生阻塞,会一直等到任务执行完毕才返回;
  • get(long timeout, TimeUnit unit)用来获取执行结果,如果在指定时间内,还没获取到结果,就直接返回null。

  也就是说Future提供了三种功能:

  1)判断任务是否完成;

  2)能够中断任务;

  3)能够获取任务执行结果。

  因为Future只是一个接口,所以是无法直接用来创建对象使用的,因此就有了下面的FutureTask。

三.FutureTask

我们先来看一下FutureTask的实现:

public class FutureTask implements RunnableFuture

FutureTask类实现了RunnableFuture接口,我们看一下RunnableFuture接口的实现:

public interface RunnableFuture extends Runnable, Future {
    void run();
}

可以看出RunnableFuture继承了Runnable接口和Future接口,而FutureTask实现了RunnableFuture接口。所以它既可以作为Runnable被线程执行,又可以作为Future得到Callable的返回值。

  FutureTask提供了2个构造器:

public FutureTask(Callable callable) {
}
public FutureTask(Runnable runnable, V result) {
}

事实上,FutureTask是Future接口的一个唯一实现类。

四.使用示例

  1.使用Callable+Future获取执行结果

public class Test {
    public static void main(String[] args) {
        ExecutorService executor = Executors.newCachedThreadPool();
        Task task = new Task();
        Future result = executor.submit(task);
        executor.shutdown();
         
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e1) {
            e1.printStackTrace();
        }
         
        System.out.println("主线程在执行任务");
         
        try {
            System.out.println("task运行结果"+result.get());
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
         
        System.out.println("所有任务执行完毕");
    }
}
class Task implements Callable{
    @Override
    public Integer call() throws Exception {
        System.out.println("子线程在进行计算");
        Thread.sleep(3000);
        int sum = 0;
        for(int i=0;i<100;i++)
            sum += i;
        return sum;
    }
}

执行结果:

子线程在进行计算
主线程在执行任务
task运行结果4950
所有任务执行完毕

2.使用Callable+FutureTask获取执行结果

public class Test {
    public static void main(String[] args) {
        //第一种方式
        ExecutorService executor = Executors.newCachedThreadPool();
        Task task = new Task();
        FutureTask futureTask = new FutureTask(task);
        executor.submit(futureTask);
        executor.shutdown();
         
        //第二种方式,注意这种方式和第一种方式效果是类似的,只不过一个使用的是ExecutorService,一个使用的是Thread
        /*Task task = new Task();
        FutureTask futureTask = new FutureTask(task);
        Thread thread = new Thread(futureTask);
        thread.start();*/
         
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e1) {
            e1.printStackTrace();
        }
         
        System.out.println("主线程在执行任务");
         
        try {
            System.out.println("task运行结果"+futureTask.get());
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
         
        System.out.println("所有任务执行完毕");
    }
}
class Task implements Callable{
    @Override
    public Integer call() throws Exception {
        System.out.println("子线程在进行计算");
        Thread.sleep(3000);
        int sum = 0;
        for(int i=0;i<100;i++)
            sum += i;
        return sum;
    }
}

如果为了可取消性而使用 Future 但又不提供可用的结果,则可以声明 Future 形式类型、并返回 null 作为底层任务的结果。

 

2.ExecutorService四种线程池的例子与说明

1、new Thread的弊端

a. 每次new Thread新建对象性能差。

b. 线程缺乏统一管理,可能无限制新建线程,相互之间竞争,及可能占用过多系统资源导致死机或oom。

c. 缺乏更多功能,如定时执行、定期执行、线程中断。

    相比new Thread,Java Executors提供的四种线程池的好处在于:

a. 重用存在的线程,减少对象创建、消亡的开销,性能佳。

b. 可有效控制最大并发线程数,提高系统资源的使用率,同时避免过多资源竞争,避免堵塞。

c. 提供定时执行、定期执行、单线程、并发数控制等功能。

 

2、Java 线程池

Java通过Executors提供四种线程池,分别为:

newCachedThreadPool 创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。

newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。

newScheduledThreadPool 创建一个定长线程池,支持定时及周期性任务执行。

newSingleThreadExecutor 创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。

(1). newCachedThreadPool

创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。示例代码如下:

ExecutorService cachedThreadPool = Executors.newCachedThreadPool();
for (int i = 0; i < 10; i++) {
    final int index = i;
    try {
        Thread.sleep(index * 1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }

    cachedThreadPool.execute(new Runnable() {

        @Override
        public void run() {
            System.out.println(index);
        }
    });
}

线程池为无限大,当执行第二个任务时第一个任务已经完成,会复用执行第一个任务的线程,而不用每次新建线程。

 

(2). newFixedThreadPool

创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。示例代码如下:

ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3);
for (int i = 0; i < 10; i++) {
    final int index = i;
    fixedThreadPool.execute(new Runnable() {


        @Override
        public void run() {
            try {
                System.out.println(index);
                Thread.sleep(2000);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
    });
}

因为线程池大小为3,每个任务输出index后sleep 2秒,所以每两秒打印3个数字。

定长线程池的大小最好根据系统资源进行设置。如Runtime.getRuntime().availableProcessors()。可参考PreloadDataCache。

 

(3) newScheduledThreadPool

创建一个定长线程池,支持定时及周期性任务执行。延迟执行示例代码如下:

ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(5);
scheduledThreadPool.schedule(new Runnable() {

    @Override
    public void run() {
        System.out.println("delay 3 seconds");
    }
}, 3, TimeUnit.SECONDS);

表示延迟3秒执行。

 

定期执行示例代码如下:

scheduledThreadPool.scheduleAtFixedRate(new Runnable() {
 @Override
	public void run() {
		System.out.println("delay 1 seconds, and excute every 3 seconds");
	}
}, 1, 3, TimeUnit.SECONDS);

表示延迟1秒后每3秒执行一次。

ScheduledExecutorService比Timer更安全,功能更强大,后面会有一篇单独进行对比。

 

(4)、newSingleThreadExecutor

创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。示例代码如下:

ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();
for (int i = 0; i < 10; i++) {
    final int index = i;
    singleThreadExecutor.execute(new Runnable() {

        @Override
        public void run() {
            try {
                System.out.println(index);
                Thread.sleep(2000);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
    });
}

结果依次输出,相当于顺序执行各个任务。

现行大多数GUI程序都是单线程的。Android中单线程可用于数据库操作,文件操作,应用批量安装,应用批量删除等不适合并发但可能IO阻塞性及影响UI线程响应的操作。

 

你可能感兴趣的:(java,多线程,线程池,FutureTask,ExecutorService)