作者系列文章:https://www.cnblogs.com/linuxk/category/1248289.html
Kubernetes Pod
是有生命周期的,它们可以被创建,也可以被销毁,然而一旦被销毁生命就永远结束。 通过 ReplicationController
能够动态地创建和销毁 Pod
(例如,需要进行扩缩容,或者执行 滚动升级)。 每个 Pod
都会获取它自己的 IP 地址,即使这些 IP 地址不总是稳定可依赖的。 这会导致一个问题:在 Kubernetes 集群中,如果一组 Pod
(称为 backend)为其它 Pod
(称为 frontend)提供服务,那么那些 frontend 该如何发现,并连接到这组 Pod
中的哪些 backend 呢?
Kubernetes Service
定义了这样一种抽象:一个 Pod
的逻辑分组,一种可以访问它们的策略 —— 通常称为微服务。 这一组 Pod
能够被 Service
访问到,通常是通过 Label Selector
(查看下面了解,为什么可能需要没有 selector 的 Service
)实现的。
举个例子,考虑一个图片处理 backend,它运行了3个副本。这些副本是可互换的 —— frontend 不需要关心它们调用了哪个 backend 副本。 然而组成这一组 backend 程序的 Pod
实际上可能会发生变化,frontend 客户端不应该也没必要知道,而且也不需要跟踪这一组 backend 的状态。 Service
定义的抽象能够解耦这种关联。
对 Kubernetes 集群中的应用,Kubernetes 提供了简单的 Endpoints
API,只要 Service
中的一组 Pod
发生变更,应用程序就会被更新。 对非 Kubernetes 集群中的应用,Kubernetes 提供了基于 VIP 的网桥的方式访问 Service
,再由 Service
重定向到 backend Pod
。
在 Kubernetes 集群中,每个 Node 运行一个 kube-proxy
进程。kube-proxy
负责为 Service
实现了一种 VIP(虚拟 IP)的形式,而不是 ExternalName
的形式。 在 Kubernetes v1.0 版本,代理完全在 userspace。在 Kubernetes v1.1 版本,新增了 iptables 代理,但并不是默认的运行模式。 从 Kubernetes v1.2 起,默认就是 iptables 代理。在Kubernetes v1.8.0-beta.0中,添加了ipvs代理。在 Kubernetes v1.0 版本,Service
是 “4层”(TCP/UDP over IP)概念。 在 Kubernetes v1.1 版本,新增了 Ingress
API(beta 版),用来表示 “7层”(HTTP)服务。
kube-proxy 这个组件始终监视着apiserver中有关service的变动信息,获取任何一个与service资源相关的变动状态,通过watch监视,一旦有service资源相关的变动和创建,kube-proxy都要转换为当前节点上的能够实现资源调度规则(例如:iptables、ipvs)
这种模式,当客户端Pod请求内核空间的service iptables后,把请求转到给用户空间监听的kube-proxy 的端口,由kube-proxy来处理后,再由kube-proxy将请求转给内核空间的 service ip,再由service iptalbes根据请求转给各节点中的的service pod。
由此可见这个模式有很大的问题,由客户端请求先进入内核空间的,又进去用户空间访问kube-proxy,由kube-proxy封装完成后再进去内核空间的iptables,再根据iptables的规则分发给各节点的用户空间的pod。这样流量从用户空间进出内核带来的性能损耗是不可接受的
客户端IP请求时,直接请求本地内核service ip,根据iptables的规则直接将请求转发到到各pod上,因为使用iptable NAT来完成转发,也存在不可忽视的性能损耗。另外,如果集群中存在上万的Service/Endpoint,那么Node上的iptables rules将会非常庞大,性能还会再打折扣。
客户端IP请求时到达内核空间时,根据ipvs的规则直接分发到各pod上。kube-proxy会监视Kubernetes Service
对象和Endpoints
,调用netlink
接口以相应地创建ipvs规则并定期与Kubernetes Service
对象和Endpoints
对象同步ipvs规则,以确保ipvs状态与期望一致。访问服务时,流量将被重定向到其中一个后端Pod。
与iptables类似,ipvs基于netfilter 的 hook 功能,但使用哈希表作为底层数据结构并在内核空间中工作。这意味着ipvs可以更快地重定向流量,并且在同步代理规则时具有更好的性能。此外,ipvs为负载均衡算法提供了更多选项,例如:
轮询调度
dh
:目标哈希sh
:源哈希sed
:最短期望延迟nq
:不排队调度注意: ipvs模式假定在运行kube-proxy之前在节点上都已经安装了IPVS内核模块。当kube-proxy以ipvs代理模式启动时,kube-proxy将验证节点上是否安装了IPVS模块,如果未安装,则kube-proxy将回退到iptables代理模式。
如果某个服务后端pod发生变化,标签选择器适应的pod有多一个,适应的信息会立即反映到apiserver上,而kube-proxy一定可以watch到etc中的信息变化,而将它立即转为ipvs或者iptables中的规则,这一切都是动态和实时的,删除一个pod也是同样的原理。如图:
(1)清单创建Service
View Code
其中重要的4个字段:
apiVersion:
kind:
metadata:
spec:
clusterIP: 可以自定义,也可以动态分配
ports:(与后端容器端口关联)
selector:(关联到哪些pod资源上)
type:服务类型
(2)service的类型
对一些应用(如 Frontend)的某些部分,可能希望通过外部(Kubernetes 集群外部)IP 地址暴露 Service。
Kubernetes ServiceTypes
允许指定一个需要的类型的 Service,默认是 ClusterIP
类型。
Type
的取值以及行为如下:
ClusterIP
:通过集群的内部 IP 暴露服务,选择该值,服务只能够在集群内部可以访问,这也是默认的 ServiceType
。NodePort
:通过每个 Node 上的 IP 和静态端口(NodePort
)暴露服务。NodePort
服务会路由到 ClusterIP
服务,这个 ClusterIP
服务会自动创建。通过请求 :
,可以从集群的外部访问一个 NodePort
服务。LoadBalancer
:使用云提供商的负载均衡器,可以向外部暴露服务。外部的负载均衡器可以路由到 NodePort
服务和 ClusterIP
服务。ExternalName
:通过返回 CNAME
和它的值,可以将服务映射到 externalName
字段的内容(例如, foo.bar.example.com
)。 没有任何类型代理被创建,这只有 Kubernetes 1.7 或更高版本的 kube-dns
才支持。ClusterIP的service类型演示:
[root@k8s-master mainfests]# cat redis-svc.yaml apiVersion: v1 kind: Service metadata: name: redis namespace: default spec: selector: #标签选择器,必须指定pod资源本身的标签 app: redis role: logstor type: ClusterIP #指定服务类型为ClusterIP ports: #指定端口 - port: 6379 #暴露给服务的端口 - targetPort: 6379 #容器的端口 [root@k8s-master mainfests]# kubectl apply -f redis-svc.yaml service/redis created [root@k8s-master mainfests]# kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 10.96.0.1443/TCP 36d redis ClusterIP 10.107.238.182 6379/TCP 1m [root@k8s-master mainfests]# kubectl describe svc redis Name: redis Namespace: default Labels: Annotations: kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"v1","kind":"Service","metadata":{"annotations":{},"name":"redis","namespace":"default"},"spec":{"ports":[{"port":6379,"targetPort":6379}... Selector: app=redis,role=logstor Type: ClusterIP IP: 10.107.238.182 #service ip Port: 6379/TCP TargetPort: 6379/TCP Endpoints: 10.244.1.16:6379 #此处的ip+端口就是pod的ip+端口 Session Affinity: None Events: [root@k8s-master mainfests]# kubectl get pod redis-5b5d6fbbbd-v82pw -o wide NAME READY STATUS RESTARTS AGE IP NODE redis-5b5d6fbbbd-v82pw 1/1 Running 0 20d 10.244.1.16 k8s-node01
从上演示可以总结出:service不会直接到pod,service是直接到endpoint资源,就是地址加端口,再由endpoint再关联到pod。
service只要创建完,就会在dns中添加一个资源记录进行解析,添加完成即可进行解析。资源记录的格式为:SVC_NAME.NS_NAME.DOMAIN.LTD.
默认的集群service 的A记录:svc.cluster.local.
redis服务创建的A记录:redis.default.svc.cluster.local.
NodePort的service类型演示:
[root@k8s-master mainfests]# kubectl get pods --show-labels |grep myapp-deploy myapp-deploy-69b47bc96d-4hxxw 1/1 Running 0 12m app=myapp,pod-template-hash=2560367528,release=canary myapp-deploy-69b47bc96d-95bc4 1/1 Running 0 12m app=myapp,pod-template-hash=2560367528,release=canary myapp-deploy-69b47bc96d-hwbzt 1/1 Running 0 12m app=myapp,pod-template-hash=2560367528,release=canary myapp-deploy-69b47bc96d-pjv74 1/1 Running 0 12m app=myapp,pod-template-hash=2560367528,release=canary myapp-deploy-69b47bc96d-rf7bs 1/1 Running 0 12m app=myapp,pod-template-hash=2560367528,release=canary [root@k8s-master mainfests]# cat myapp-svc.yaml #为myapp创建service apiVersion: v1 kind: Service metadata: name: myapp namespace: default spec: selector: app: myapp release: canary type: NodePort ports: - port: 80 targetPort: 80 nodePort: 30080 [root@k8s-master mainfests]# kubectl apply -f myapp-svc.yaml service/myapp created [root@k8s-master mainfests]# kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 10.96.0.1443/TCP 36d myapp NodePort 10.101.245.119 80:30080/ TCP 5s redis ClusterIP 10.107.238.1826379/TCP 28m [root@k8s-master mainfests]# while true;do curl http://192.168.56.11:30080/hostname.html;sleep 1;done myapp-deploy-69b47bc96d-95bc4 myapp-deploy-69b47bc96d-4hxxw myapp-deploy-69b47bc96d-pjv74 myapp-deploy-69b47bc96d-rf7bs myapp-deploy-69b47bc96d-95bc4 myapp-deploy-69b47bc96d-rf7bs myapp-deploy-69b47bc96d-95bc4 myapp-deploy-69b47bc96d-pjv74 myapp-deploy-69b47bc96d-4hxxw myapp-deploy-69b47bc96d-pjv74 myapp-deploy-69b47bc96d-pjv74 myapp-deploy-69b47bc96d-4hxxw myapp-deploy-69b47bc96d-pjv74 myapp-deploy-69b47bc96d-pjv74 myapp-deploy-69b47bc96d-pjv74 myapp-deploy-69b47bc96d-95bc4 myapp-deploy-69b47bc96d-hwbzt [root@k8s-master mainfests]# while true;do curl http://192.168.56.11:30080/;sleep 1;done
Hello MyApp | Version: v1 | Pod Name
Hello MyApp | Version: v1 | Pod Name
Hello MyApp | Version: v1 | Pod Name
Hello MyApp | Version: v1 | Pod Name
Hello MyApp | Version: v1 | Pod Name
Hello MyApp | Version: v1 | Pod Name
从以上例子,可以看到通过NodePort方式已经实现了从集群外部端口进行访问,访问链接如下:http://192.168.56.11:30080/
Pod的会话保持
[root@k8s-master mainfests]# kubectl explain svc.spec.sessionAffinity KIND: Service VERSION: v1 FIELD: sessionAffinityDESCRIPTION: Supports "ClientIP" and "None". Used to maintain session affinity. Enable client IP based session affinity. Must be ClientIP or None. Defaults to None. More info: https://kubernetes.io/docs/concepts/services-networking/service/#virtual-ips-and-service-proxies
sessionAffinity支持ClientIP和None 两种方式,默认是None(随机调度) ClientIP是来自于同一个客户端的请求调度到同一个pod中
[root@k8s-master mainfests]# vim myapp-svc.yaml apiVersion: v1 kind: Service metadata: name: myapp namespace: default spec: selector: app: myapp release: canary sessionAffinity: ClientIP type: NodePort ports: - port: 80 targetPort: 80 nodePort: 30080 [root@k8s-master mainfests]# kubectl apply -f myapp-svc.yaml service/myapp configured [root@k8s-master mainfests]# kubectl describe svc myapp Name: myapp Namespace: default Labels:Annotations: kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"v1","kind":"Service","metadata":{"annotations":{},"name":"myapp","namespace":"default"},"spec":{"ports":[{"nodePort":30080,"port":80,"ta... Selector: app=myapp,release=canary Type: NodePort IP: 10.101.245.119 Port: 80/TCP TargetPort: 80/TCP NodePort: 30080/TCP Endpoints: 10.244.1.18:80,10.244.1.19:80,10.244.2.15:80 + 2 more... Session Affinity: ClientIP External Traffic Policy: Cluster Events: [root@k8s-master mainfests]# while true;do curl http://192.168.56.11:30080/hostname.html;sleep 1;done myapp-deploy-69b47bc96d-hwbzt myapp-deploy-69b47bc96d-hwbzt myapp-deploy-69b47bc96d-hwbzt myapp-deploy-69b47bc96d-hwbzt myapp-deploy-69b47bc96d-hwbzt myapp-deploy-69b47bc96d-hwbzt myapp-deploy-69b47bc96d-hwbzt myapp-deploy-69b47bc96d-hwbzt
也可以使用打补丁的方式进行修改yaml内的内容,如下:
kubectl patch svc myapp -p '{"spec":{"sessionAffinity":"ClusterIP"}}' #session保持,同一ip访问同一个pod kubectl patch svc myapp -p '{"spec":{"sessionAffinity":"None"}}' #取消session
有时不需要或不想要负载均衡,以及单独的 Service IP。 遇到这种情况,可以通过指定 Cluster IP(spec.clusterIP
)的值为 "None"
来创建 Headless
Service。
这个选项允许开发人员自由寻找他们自己的方式,从而降低与 Kubernetes 系统的耦合性。 应用仍然可以使用一种自注册的模式和适配器,对其它需要发现机制的系统能够很容易地基于这个 API 来构建。
对这类 Service
并不会分配 Cluster IP,kube-proxy 不会处理它们,而且平台也不会为它们进行负载均衡和路由。 DNS 如何实现自动配置,依赖于 Service
是否定义了 selector。
(1)编写headless service配置清单 [root@k8s-master mainfests]# cp myapp-svc.yaml myapp-svc-headless.yaml [root@k8s-master mainfests]# vim myapp-svc-headless.yaml apiVersion: v1 kind: Service metadata: name: myapp-headless namespace: default spec: selector: app: myapp release: canary clusterIP: "None" #headless的clusterIP值为None ports: - port: 80 targetPort: 80 (2)创建headless service [root@k8s-master mainfests]# kubectl apply -f myapp-svc-headless.yaml service/myapp-headless created [root@k8s-master mainfests]# kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 10.96.0.1443/TCP 36d myapp NodePort 10.101.245.119 80:30080/TCP 1h myapp-headless ClusterIP None 80/ TCP 5s redis ClusterIP 10.107.238.1826379/TCP 2h (3)使用coredns进行解析验证 [root@k8s-master mainfests]# dig -t A myapp-headless.default.svc.cluster.local. @10.96.0.10 ; <<>> DiG 9.9.4-RedHat-9.9.4-61.el7 <<>> -t A myapp-headless.default.svc.cluster.local. @10.96.0.10 ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 62028 ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 1 ;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 4096 ;; QUESTION SECTION: ;myapp-headless.default.svc.cluster.local. IN A ;; ANSWER SECTION: myapp-headless.default.svc.cluster.local. 5 IN A 10.244.1.18 myapp-headless.default.svc.cluster.local. 5 IN A 10.244.1.19 myapp-headless.default.svc.cluster.local. 5 IN A 10.244.2.15 myapp-headless.default.svc.cluster.local. 5 IN A 10.244.2.16 myapp-headless.default.svc.cluster.local. 5 IN A 10.244.2.17 ;; Query time: 4 msec ;; SERVER: 10.96.0.10#53(10.96.0.10) ;; WHEN: Thu Sep 27 04:27:15 EDT 2018 ;; MSG SIZE rcvd: 349 [root@k8s-master mainfests]# kubectl get svc -n kube-system NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kube-dns ClusterIP 10.96.0.10 53/UDP,53/ TCP 36d [root@k8s-master mainfests]# kubectl get pods -o wide -l app=myapp NAME READY STATUS RESTARTS AGE IP NODE myapp-deploy-69b47bc96d-4hxxw 1/1 Running 0 1h 10.244.1.18 k8s-node01 myapp-deploy-69b47bc96d-95bc4 1/1 Running 0 1h 10.244.2.16 k8s-node02 myapp-deploy-69b47bc96d-hwbzt 1/1 Running 0 1h 10.244.1.19 k8s-node01 myapp-deploy-69b47bc96d-pjv74 1/1 Running 0 1h 10.244.2.15 k8s-node02 myapp-deploy-69b47bc96d-rf7bs 1/1 Running 0 1h 10.244.2.17 k8s-node02 (4)对比含有ClusterIP的service解析 [root@k8s-master mainfests]# dig -t A myapp.default.svc.cluster.local. @10.96.0.10 ; <<>> DiG 9.9.4-RedHat-9.9.4-61.el7 <<>> -t A myapp.default.svc.cluster.local. @10.96.0.10 ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 50445 ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1 ;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 4096 ;; QUESTION SECTION: ;myapp.default.svc.cluster.local. IN A ;; ANSWER SECTION: myapp.default.svc.cluster.local. 5 IN A 10.101.245.119 ;; Query time: 1 msec ;; SERVER: 10.96.0.10#53(10.96.0.10) ;; WHEN: Thu Sep 27 04:31:16 EDT 2018 ;; MSG SIZE rcvd: 107 [root@k8s-master mainfests]# kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 10.96.0.1443/TCP 36d myapp NodePort 10.101.245.119 80:30080/ TCP 1h myapp-headless ClusterIP None80/TCP 11m redis ClusterIP 10.107.238.182 6379/TCP 2h
从以上的演示可以看到对比普通的service和headless service,headless service做dns解析是直接解析到pod的,而servcie是解析到ClusterIP的,那么headless有什么用呢???这将在statefulset中应用到,这里暂时仅仅做了解什么是headless service和创建方法。