我们继续Java多线程与并发系列之旅,之前我们分享了Synchronized 和 ReentrantLock 都是独占锁,即在同一时刻只有一个线程获取到锁。
然而在有些业务场景中,我们大多在读取数据,很少写入数据,这种情况下,如果仍使用独占锁,效率将及其低下。
针对这种情况,Java提供了读写锁——ReentrantReadWriteLock。
有点类似MySQL数据库为代表的读写分离机制,既然我们知道了读写锁是用于读多写少的场景。那问题来了,ReentrantReadWriteLock是怎样来实现的呢,它与ReentrantLock的实现又有什么的区别呢?
带着这些疑问,Mike将通过本篇为大家剖析其中的缘由。
本文作者:MikeChen,10年+大厂架构师、CTO,持续创作、免费分享【BAT架构技术专题500+期】。
很多情况下有这样一种场景:对共享资源有读和写的操作,且写操作没有读操作那么频繁。
在没有写操作的时候,多个线程同时读一个资源没有任何问题,所以应该允许多个线程同时读取共享资源,但是如果一个线程想去写这些共享资源,就不应该允许其他线程对该资源进行读和写的操作了。
针对这种场景,JAVA的并发包提供了读写锁ReentrantReadWriteLock,它表示两个锁,一个是读操作相关的锁,称为共享锁;一个是写相关的锁,称为排他锁。
1. ReentrantReadWriteLock的继承关系
public interface ReadWriteLock {
/**
* Returns the lock used for reading.
*
* @return the lock used for reading.
*/
Lock readLock();
/**
* Returns the lock used for writing.
*
* @return the lock used for writing.
*/
Lock writeLock();
}
读写锁 ReadWriteLock
读写锁维护了一对相关的锁,一个用于只读操作,一个用于写入操作。
只要没有写入,读取锁可以由多个读线程同时保持,写入锁是独占的。
2.ReentrantReadWriteLock的核心变量
ReentrantReadWriteLock类包含三个核心变量:
3.ReentrantReadWriteLock的成员变量和构造函数
/** 内部提供的读锁 */
private final ReentrantReadWriteLock.ReadLock readerLock;
/** 内部提供的写锁 */
private final ReentrantReadWriteLock.WriteLock writerLock;
/** AQS来实现的同步器 */
final Sync sync;
/**
* Creates a new {@code ReentrantReadWriteLock} with
* 默认创建非公平的读写锁
*/
public ReentrantReadWriteLock() {
this(false);
}
/**
* Creates a new {@code ReentrantReadWriteLock} with
* the given fairness policy.
*
* @param fair {@code true} if this lock should use a fair ordering policy
*/
public ReentrantReadWriteLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
readerLock = new ReadLock(this);
writerLock = new WriteLock(this);
}
ReentrantReadWriteLock实现关键点,主要包括:
1.读写状态的设计
之前谈ReentrantLock的时候,Sync类是继承于AQS,主要以int state为线程锁状态,0表示没有被线程占用,1表示已经有线程占用。
同样ReentrantReadWriteLock也是继承于AQS来实现同步,那int state怎样同时来区分读锁和写锁的?
如果在一个整型变量上维护多种状态,就一定需要“按位切割使用”这个变量,ReentrantReadWriteLock将int类型的state将变量切割成两部分:
abstract static class Sync extends AbstractQueuedSynchronizer {
// 版本序列号
private static final long serialVersionUID = 6317671515068378041L;
// 高16位为读锁,低16位为写锁
static final int SHARED_SHIFT = 16;
// 读锁单位
static final int SHARED_UNIT = (1 << SHARED_SHIFT);
// 读锁最大数量
static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1;
// 写锁最大数量
static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
// 本地线程计数器
private transient ThreadLocalHoldCounter readHolds;
// 缓存的计数器
private transient HoldCounter cachedHoldCounter;
// 第一个读线程
private transient Thread firstReader = null;
// 第一个读线程的计数
private transient int firstReaderHoldCount;
}
2.写锁的获取与释放
protected final boolean tryAcquire(int acquires) {
/*
* Walkthrough:
* 1. If read count nonzero or write count nonzero
* and owner is a different thread, fail.
* 2. If count would saturate, fail. (This can only
* happen if count is already nonzero.)
* 3. Otherwise, this thread is eligible for lock if
* it is either a reentrant acquire or
* queue policy allows it. If so, update state
* and set owner.
*/
Thread current = Thread.currentThread();
int c = getState();
//获取独占锁(写锁)的被获取的数量
int w = exclusiveCount(c);
if (c != 0) {
// (Note: if c != 0 and w == 0 then shared count != 0)
//1.如果同步状态不为0,且写状态为0,则表示当前同步状态被读锁获取
//2.或者当前拥有写锁的线程不是当前线程
if (w == 0 || current != getExclusiveOwnerThread())
return false;
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");
// Reentrant acquire
setState(c + acquires);
return true;
}
if (writerShouldBlock() ||
!compareAndSetState(c, c + acquires))
return false;
setExclusiveOwnerThread(current);
return true;
}
1)c是获取当前锁状态,w是获取写锁的状态。
2)如果锁状态不为零,而写锁的状态为0,则表示读锁状态不为0,所以当前线程不能获取写锁。或者锁状态不为零,而写锁的状态也不为0,但是获取写锁的线程不是当前线程,则当前线程不能获取写锁。
3)写锁是一个可重入的排它锁,在获取同步状态时,增加了一个读锁是否存在的判断。
写锁的释放与ReentrantLock的释放过程类似,每次释放将写状态减1,直到写状态为0时,才表示该写锁被释放了。
3.读锁的获取与释放
protected final int tryAcquireShared(int unused) {
for(;;) {
int c = getState();
int nextc = c + (1<<16);
if(nextc < c) {
throw new Error("Maxumum lock count exceeded");
}
if(exclusiveCount(c)!=0 && owner != Thread.currentThread())
return -1;
if(compareAndSetState(c,nextc))
return 1;
}
}
1)读锁是一个支持重进入的共享锁,可以被多个线程同时获取。
2)在没有写状态为0时,读锁总会被成功获取,而所做的也只是增加读状态(线程安全)
3)读状态是所有线程获取读锁次数的总和,而每个线程各自获取读锁的次数只能选择保存在ThreadLocal中,由线程自身维护。
读锁的每次释放均减小状态(线程安全的,可能有多个读线程同时释放锁),减小的值是1<<16。
4.锁降级
降级是指当前把持住写锁,再获取到读锁,随后释放(先前拥有的)写锁的过程。
锁降级过程中的读锁的获取是否有必要,答案是必要的。主要是为了保证数据的可见性,如果当前线程不获取读锁而直接释放写锁,假设此刻另一个线程获取的写锁,并修改了数据,那么当前线程就步伐感知到线程T的数据更新,如果当前线程遵循锁降级的步骤,那么线程T将会被阻塞,直到当前线程使数据并释放读锁之后,线程T才能获取写锁进行数据更新。
5.读锁与写锁的整体流程
本篇详细介绍了ReentrantReadWriteLock的特征、实现、锁的获取过程,通过4个关键点的核心设计:
从而才能实现:共享资源有读和写的操作,且写操作没有读操作那么频繁的应用场景。