python稀疏格式储存coo_matrix/csr_matrix/csc_matrix

概述

在用python进行科学运算时,常常需要把一个稀疏的np.array压缩,这时候就用到scipy库中的sparse.csr_matrix(csr:Compressed Sparse Row marix) 和sparse.csc_matric(csc:Compressed Sparse Column marix)

scipy.sparse.csr_matrix

#  示例解读
>>> indptr = np.array([0, 2, 3, 6]) # 0->2 表示第一行有2-0=2个元素;2->3 表示第2行到第三行有1个元素
>>> indices = np.array([0, 2, 2, 0, 1, 2]) #结合第一行有2个元素,得出第一行的两个元素在第0,2列上
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])
# 按row行来压缩
# 根据indptr得出每行有几个元素,根据indices得出每行的元素在什么位置,根据data得出每行的元素都是什么值
# 对于第i行,非0数据列是indices[indptr[i]:indptr[i+1]] 数据是data[indptr[i]:indptr[i+1]]
# 在本例中
# 第0行,有非0的数据列是indices[indptr[0]:indptr[1]] = indices[0:2] = [0,2]
# 数据是data[indptr[0]:indptr[1]] = data[0:2] = [1,2],所以在第0行第0列是1,第2列是2
# 第1行,有非0的数据列是indices[indptr[1]:indptr[2]] = indices[2:3] = [2]
# 数据是data[indptr[1]:indptr[2] = data[2:3] = [3],所以在第1行第2列是3
# 第2行,有非0的数据列是indices[indptr[2]:indptr[3]] = indices[3:6] = [0,1,2]
# 数据是data[indptr[2]:indptr[3]] = data[3:6] = [4,5,6],所以在第2行第0列是4,第1列是5,第2列是6

scipy.sparse.csc_matrix

#  示例解读
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 4],
       [0, 0, 5],
       [2, 3, 6]])
# 按col列来压缩
# 对于第i列,非0数据行是indices[indptr[i]:indptr[i+1]] 数据是data[indptr[i]:indptr[i+1]]
# 在本例中
# 第0列,有非0的数据行是indices[indptr[0]:indptr[1]] = indices[0:2] = [0,2]
# 数据是data[indptr[0]:indptr[1]] = data[0:2] = [1,2],所以在第0列第0行是1,第2行是2
# 第1行,有非0的数据行是indices[indptr[1]:indptr[2]] = indices[2:3] = [2]
# 数据是data[indptr[1]:indptr[2] = data[2:3] = [3],所以在第1列第2行是3
# 第2行,有非0的数据行是indices[indptr[2]:indptr[3]] = indices[3:6] = [0,1,2]
# 数据是data[indptr[2]:indptr[3]] = data[3:6] = [4,5,6],所以在第2列第0行是4,第1行是5,第2行是6

scipy.sparse.coo_matrix

这个就更容易了,给我一分钟。直接上例子如下:即n行,m列存了data[i],其余位置皆为0.

>>> from scipy.sparse import coo_matrix
>>> coo_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)
>>>
>>> row  = np.array([0, 3, 1, 0])
>>> col  = np.array([0, 3, 1, 2])
>>> data = np.array([4, 5, 7, 9])
>>> coo_matrix((data, (row, col)), shape=(4, 4)).toarray()
array([[4, 0, 9, 0],
       [0, 7, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 5]])

 

 

Ref: https://blog.csdn.net/Chem0527/article/details/95526791###

https://www.jianshu.com/p/6248d3a307a1

https://blog.csdn.net/u013010889/article/details/53305595###

 

你可能感兴趣的:(python)