深入学习java源码之ArrayList.addAll()与ArrayList.retainAll()
引入多态
List是接口,所以实现类要把接口中的抽象方法全部重写。在重写的时候父类中的方法的时候,操作的数据类型也是要与父类保持一致的。
所以父类和子类操作的都是泛型E(此时还不确定具体操作的是什么数据类型,有使用者确定)
public class ArrayList extends AbstractList
implements List, RandomAccess, Cloneable, java.io.Serializable{}
List list = new ArrayList();
Java实现多态有三个必要条件:继承、重写、向上转型。
重写:子类对父类中某些方法进行重新定义,在调用这些方法时就会调用子类的方法。
向上转型:在多态中需要将子类的引用赋给父类对象,只有这样该引用才能够具备技能调用父类的方法和子类的方法。
所谓多态就是指程序中定义的引用变量所指向的具体类型和通过该引用变量发出的方法调用在编程时并不确定,而是在程序运行期间才确定,即一个引用变量倒底会指向哪个类的实例对象,该引用变量发出的方法调用到底是哪个类中实现的方法,必须在由程序运行期间才能决定。
即不修改程序代码就可以改变程序运行时所绑定的具体代码,让程序可以选择多个运行状态,这就是多态性。
在这里我们这样理解,这里定义了一个List类型的list,它指向ArrayList对象实例。由于ArrayList是继承与List,所以ArrayList可以自动向上转型为List,所以list是可以指向ArrayList实例对象的。这样做存在一个非常大的好处,在继承中我们知道子类是父类的扩展,它可以提供比父类更加强大的功能,如果我们定义了一个指向子类的父类引用类型,那么它除了能够引用父类的共性外,还可以使用子类强大的功能。
但是向上转型存在一些缺憾,那就是它必定会导致一些方法和属性的丢失,而导致我们不能够获取它们。所以父类类型的引用可以调用父类中定义的所有属性和方法,对于只存在与子类中的方法和属性它就望尘莫及了。
指向子类的父类引用由于向上转型了,它只能访问父类中拥有的方法和属性,而对于子类中存在而父类中不存在的方法,该引用是不能使用的,尽管是重载该方法。若子类重写了父类中的某些方法,在调用该些方法的时候,必定是使用子类中定义的这些方法(动态连接、动态调用)。
引入泛型
使集合能够记住集合内元素各类型,且能够达到只要编译时不出现问题,运行时就不会出现“java.lang.ClassCastException”异常
/*
List list = new ArrayList();
list.add("qqyumidi");
list.add("corn");
list.add(100);
for (int i = 0; i < list.size(); i++) {
String name = (String) list.get(i); // 1
System.out.println("name:" + name);
}
*/
List list = new ArrayList();
list.add("qqyumidi");
list.add("corn");
//list.add(100); // 1 提示编译错误
for (int i = 0; i < list.size(); i++) {
String name = list.get(i); // 2
System.out.println("name:" + name);
}
通过List
泛型定义,我们知道在List
Java泛型中的标记符含义:
E - Element (在集合中使用,因为集合中存放的是元素)
ArrayList
T - Type(Java 类)
K - Key(键)
V - Value(值)
N - Number(数值类型)
? - 表示不确定的java类型
泛型三种:
[1]ArrayList
[2]ArrayList> al=new ArrayList>();集合元素可以是任意类型,这种没有意义,一般是方法中,只是为了说明用法
[3]ArrayList extends E> al=new ArrayList extends E>();
泛型的限定:
? extends E:接收E类型或者E的子类型。
?super E:接收E类型或者E的父类型。
在具体使用时,可以分为泛型接口、泛型类和泛型方法。
public class ArrayList extends AbstractList
implements List, RandomAccess, Cloneable, java.io.Serializable
{
public ArrayList(Collection extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// replace with empty array.
this.elementData = EMPTY_ELEMENTDATA;
}
}
public T[] toArray(T[] a) {
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
public boolean addAll(Collection extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
public boolean removeAll(Collection> c) {
Objects.requireNonNull(c);
return batchRemove(c, false);
}
}
对于不同传入的类型实参,生成的相应对象实例的类型是不是一样的
class Box {
private T data;
public Box() {
}
public Box(T data) {
this.data = data;
}
public T getData() {
return data;
}
}
Box name = new Box("corn");
Box age = new Box(712);
在使用泛型类时,虽然传入了不同的泛型实参,但并没有真正意义上生成不同的类型,传入不同泛型实参的泛型类在内存上只有一个,即还是原来的最基本的类型(本实例中为Box),当然,在逻辑上我们可以理解成多个不同的泛型类型。
究其原因,在于Java中的泛型这一概念提出的目的,导致其只是作用于代码编译阶段,在编译过程中,对于正确检验泛型结果后,会将泛型的相关信息擦出,也就是说,成功编译过后的class文件中是不包含任何泛型信息的。泛型信息不会进入到运行时阶段。
对此总结成一句话:泛型类型在逻辑上看以看成是多个不同的类型,实际上都是相同的基本类型。
java源码
可调整大小的数组的实现List接口。 实现所有可选列表操作,并允许所有元素,包括null 。 除了实现List 接口之外,该类还提供了一些方法来操纵内部使用的存储列表的数组的大小。 (这个类是大致相当于Vector,不同之处在于它是不同步的)。
该size,isEmpty,get,set,iterator和listIterator操作在固定时间内运行。 add操作以摊余常数运行 ,即添加n个元素需要O(n)个时间。 所有其他操作都以线性时间运行(粗略地说)。 与LinkedList实施相比,常数因子较低。
每个ArrayList实例都有一个容量 。 容量是用于存储列表中的元素的数组的大小。 它总是至少与列表大小一样大。 当元素添加到ArrayList时,其容量会自动增长。 没有规定增长政策的细节,除了添加元素具有不变的摊销时间成本。
应用程序可以添加大量使用ensureCapacity操作元件的前增大ArrayList实例的容量。 这可能会减少增量重新分配的数量。
请注意,此实现不同步。 如果多个线程同时访问884457282749实例,并且至少有一个线程在结构上修改列表,则必须在外部进行同步。 (结构修改是添加或删除一个或多个元素的任何操作,或明确调整后台数组的大小;仅设置元素的值不是结构修改。)这通常是通过在一些自然地封装了列表。 如果没有这样的对象存在,列表应该使用Collections.synchronizedList方法“包装”。 这最好在创建时完成,以防止意外的不同步访问列表:
List list = Collections.synchronizedList(new ArrayList(...)); The iterators returned by this class's个 iterator和listIterator方法是快速失败的 :如果列表在任何时间从结构上修改创建迭代器之后,以任何方式除非通过迭代器自身remove种或add方法,迭代器都将抛出一个ConcurrentModificationException 。 因此,面对并发修改,迭代器将快速而干净地失败,而不是在未来未确定的时间冒着任意的非确定性行为。
请注意,迭代器的故障快速行为无法保证,因为一般来说,在不同步并发修改的情况下,无法做出任何硬性保证。 失败快速迭代器尽力投入ConcurrentModificationException 。 因此,编写依赖于此异常的程序的正确性将是错误的:迭代器的故障快速行为应仅用于检测错误。
Modifier and Type | Method and Description |
---|---|
boolean |
add(E e) 将指定的元素追加到此列表的末尾。 |
void |
add(int index, E element) 在此列表中的指定位置插入指定的元素。 |
boolean |
addAll(Collection extends E> c) 按指定集合的Iterator返回的顺序将指定集合中的所有元素追加到此列表的末尾。 |
boolean |
addAll(int index, Collection extends E> c) 将指定集合中的所有元素插入到此列表中,从指定的位置开始。 |
void |
clear() 从列表中删除所有元素。 |
Object |
clone() 返回此 ArrayList实例的浅拷贝。 |
boolean |
contains(Object o) 如果此列表包含指定的元素,则返回 true 。 |
void |
ensureCapacity(int minCapacity) 如果需要,增加此 ArrayList实例的容量,以确保它可以至少保存最小容量参数指定的元素数。 |
void |
forEach(Consumer super E> action) 对 |
E |
get(int index) 返回此列表中指定位置的元素。 |
int |
indexOf(Object o) 返回此列表中指定元素的第一次出现的索引,如果此列表不包含元素,则返回-1。 |
boolean |
isEmpty() 如果此列表不包含元素,则返回 true 。 |
int |
lastIndexOf(Object o) 返回此列表中指定元素的最后一次出现的索引,如果此列表不包含元素,则返回-1。 |
E |
remove(int index) 删除该列表中指定位置的元素。 |
boolean |
remove(Object o) 从列表中删除指定元素的第一个出现(如果存在)。 |
boolean |
removeAll(Collection> c) 从此列表中删除指定集合中包含的所有元素。 |
boolean |
removeIf(Predicate super E> filter) 删除满足给定谓词的此集合的所有元素。 |
protected void |
removeRange(int fromIndex, int toIndex) 从这个列表中删除所有索引在 |
void |
replaceAll(UnaryOperator 将该列表的每个元素替换为将该运算符应用于该元素的结果。 |
boolean |
retainAll(Collection> c) 仅保留此列表中包含在指定集合中的元素。 |
E |
set(int index, E element) 用指定的元素替换此列表中指定位置的元素。 |
int |
size() 返回此列表中的元素数。 |
void |
sort(Comparator super E> c) 使用提供的 |
Object[] |
toArray() 以正确的顺序(从第一个到最后一个元素)返回一个包含此列表中所有元素的数组。 |
|
toArray(T[] a) 以正确的顺序返回一个包含此列表中所有元素的数组(从第一个到最后一个元素); 返回的数组的运行时类型是指定数组的运行时类型。 |
void |
trimToSize() 修改这个 ArrayList实例的容量是列表的当前大小。 |
package java.util;
import java.util.function.Consumer;
import java.util.function.Predicate;
import java.util.function.UnaryOperator;
public class ArrayList extends AbstractList
implements List, RandomAccess, Cloneable, java.io.Serializable
{
private static final long serialVersionUID = 8683452581122892189L;
private static final int DEFAULT_CAPACITY = 10;
private static final Object[] EMPTY_ELEMENTDATA = {};
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
transient Object[] elementData; // non-private to simplify nested class access
private int size;
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
public ArrayList(Collection extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// replace with empty array.
this.elementData = EMPTY_ELEMENTDATA;
}
}
public void trimToSize() {
modCount++;
if (size < elementData.length) {
elementData = (size == 0)
? EMPTY_ELEMENTDATA
: Arrays.copyOf(elementData, size);
}
}
public void ensureCapacity(int minCapacity) {
int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
// any size if not default element table
? 0
// larger than default for default empty table. It's already
// supposed to be at default size.
: DEFAULT_CAPACITY;
if (minCapacity > minExpand) {
ensureExplicitCapacity(minCapacity);
}
}
private void ensureCapacityInternal(int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
public Object clone() {
try {
ArrayList> v = (ArrayList>) super.clone();
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
}
@SuppressWarnings("unchecked")
public T[] toArray(T[] a) {
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
// Positional Access Operations
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
public E get(int index) {
rangeCheck(index);
return elementData(index);
}
public E set(int index, E element) {
rangeCheck(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
public void add(int index, E element) {
rangeCheckForAdd(index);
ensureCapacityInternal(size + 1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}
public E remove(int index) {
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
}
/**
* Removes all of the elements from this list. The list will
* be empty after this call returns.
*/
public void clear() {
modCount++;
// clear to let GC do its work
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
public boolean addAll(Collection extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
public boolean addAll(int index, Collection extends E> c) {
rangeCheckForAdd(index);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
int numMoved = size - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// clear to let GC do its work
int newSize = size - (toIndex-fromIndex);
for (int i = newSize; i < size; i++) {
elementData[i] = null;
}
size = newSize;
}
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}
public boolean removeAll(Collection> c) {
Objects.requireNonNull(c);
return batchRemove(c, false);
}
public boolean retainAll(Collection> c) {
Objects.requireNonNull(c);
return batchRemove(c, true);
}
private boolean batchRemove(Collection> c, boolean complement) {
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
for (; r < size; r++)
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
// Preserve behavioral compatibility with AbstractCollection,
// even if c.contains() throws.
if (r != size) {
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
if (w != size) {
// clear to let GC do its work
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
size = w;
modified = true;
}
}
return modified;
}
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject();
// Write out size as capacity for behavioural compatibility with clone()
s.writeInt(size);
// Write out all elements in the proper order.
for (int i=0; iArrayList instance from a stream (that is,
* deserialize it).
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
elementData = EMPTY_ELEMENTDATA;
// Read in size, and any hidden stuff
s.defaultReadObject();
// Read in capacity
s.readInt(); // ignored
if (size > 0) {
// be like clone(), allocate array based upon size not capacity
ensureCapacityInternal(size);
Object[] a = elementData;
// Read in all elements in the proper order.
for (int i=0; i filter) {
Objects.requireNonNull(filter);
// figure out which elements are to be removed
// any exception thrown from the filter predicate at this stage
// will leave the collection unmodified
int removeCount = 0;
final BitSet removeSet = new BitSet(size);
final int expectedModCount = modCount;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
@SuppressWarnings("unchecked")
final E element = (E) elementData[i];
if (filter.test(element)) {
removeSet.set(i);
removeCount++;
}
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
// shift surviving elements left over the spaces left by removed elements
final boolean anyToRemove = removeCount > 0;
if (anyToRemove) {
final int newSize = size - removeCount;
for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
i = removeSet.nextClearBit(i);
elementData[j] = elementData[i];
}
for (int k=newSize; k < size; k++) {
elementData[k] = null; // Let gc do its work
}
this.size = newSize;
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
return anyToRemove;
}
@Override
@SuppressWarnings("unchecked")
public void replaceAll(UnaryOperator operator) {
Objects.requireNonNull(operator);
final int expectedModCount = modCount;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
elementData[i] = operator.apply((E) elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
@Override
@SuppressWarnings("unchecked")
public void sort(Comparator super E> c) {
final int expectedModCount = modCount;
Arrays.sort((E[]) elementData, 0, size, c);
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
}