LTE 传输模式


LTE 中,多天线传输可以描述成将调制后的数据映射到不同的天线端口的过程。其输入为调制符号(使用 QPSK 16QAM 64QAM 调制,对应 1 个或 2 TB ),其输出为每个天线端口上的一系列符号,这些符号随后会应用到 OFDM 的调制器中,并映射到该天线端口的时频网格(即 RB )上。

     在发射机或接收机按照不同的方式来使用多天线传输可以实现不同的目的:

1.      在发射机或接收机使用多天线可用来提供额外的分集以对抗无线信道的衰落(“传输分集”),这种情况下,不同天线所经历的信号应该拥有低的互相关性,这意味着天线间的间距需要足够大(空间分集,spatial diversity),或者需要使用不同的天线极化方向(极化分集,polarization diversity),传输分集主要用于降低信道衰落

2.      在发射机或接收机可以按照某种特定的方式来使用多天线以“形成”一个完整的波束。例如,可以最大化目标接收机/发射机方向的整体天线增益,或抑制特定的主要干扰信号。这种“波束赋形beamforming)”可基于天线间高或低的衰落相关性来实现。波束赋形主要用于提高小区的覆盖。

3.      在发射机和接收机上同时使用多天线可用来建立多个并行的传输通道,这样可以提供非常高的带宽利用率而不会降低相关功率有效性。换句话说,可以在有限的带宽上提供很高的数据速率而不会大比例地降低覆盖。这种通常被称为“空间复用spatial multiplexing)”,空间复用主要用于提高数据传输速率,数据被分为多个流,这些流同时发送。

eNodeB侧,每个小区可以选择配置1/2/4/8根发射天线。

不同的多天线传输方案对应不同的传输模式(TM模式)。到Rel-10为止,LTE支持9TM模式。它们的区别在于天线映射的不同特殊结构,以及解调时所使用的不同参考信号(小区特定参考信号或UE特定参考信号),以及所依赖的不同CSI反馈类型

TM1:单天线端口传输(使用PORT0),应用于单天线传输的场合。

TM2发射分集模式,适用于小区边缘信道情况比较复杂,干扰较大的情况。也可用于UE高速移动的情况,使用24个天线端口

发射分集是默认的多天线传输模式。它通过在不同的天线上发送相同的数据实现数据冗余,从而提高SINR,使得传输更加可靠。

TM3大延迟分集的开环空分复用,适合UE高速移动的场景,使用24个天线端口

TM4闭环空间复用,适合信道条件较好的场合,用于提供较高的传输速率,使用24个天线端口

TM5MU-MIMO传输模式,主要用来提高小区的容量;使用24天线端口TM5TM4MU-MIMO版本。

TM6rank1的传输,主要适用于小区边缘的情况,使用24个天线端口

TM7单流波束赋形,主要适用于小区边缘的UE,能够有效对抗干扰,只使用port5

TM8双流波束赋形,可用于小区边缘的UE,也可用于其它场景。使用Port7port8,每个port对应一个UE特定的参考信号,这2个参考信号通过正交的OCCOrthogonal cover code,正交覆盖编码)区分,在空分复用下,这2OCC和对应的参考信号被用于这2层的传输。

TM9支持最多8层的传输,主要是为了提高数据传输速率。使用PORT7~14

     一个传输模式对应2个传输样式,见表36.213Table7.1-5。其中一个是发射分集或单天线端口传输,而另一个是基于性能优选选择的传输样式。如TM3,有2种不同的传输样式:发射分集和Larger delay CDD。如果eNodeB能从UE获得足够的反馈信息,以及信道条件较好,则会选择Large delay CDD来发送PDSCH,否则会使用发射分集。9TM模式只用于DL-SCH传输,对于BCHL1/L2控制信道,可以说使用单天线端口传输或传输分集,但通常不说使用某种TM模式。


LTE 传输模式_第1张图片

TM模式是UE特定的信息,同一小区内的不同UE,可能配置了不同的TM模式。

配置了载波聚合的UE,在不同的serving cell上可以使用不同的TM模式。

你可能感兴趣的:(LTE)