SSL常见加密算法

本文章来自  VeriSign SSL证书-维瑞 技术中心

密码学简介

据记载,公元前400年,古希腊人发明了置换密码。1881年世界上的第一个电话保密专利出现。在第二次世界大战期间,德国军方启用“恩尼格玛”密码机,密码学在战争中起着非常重要的作用。

随着信息化和数字化社会的发展,人们对信息安全和保密的重要性认识不断提高,于是在1997年,美国国家标准局公布实施了“美国数据加密标准(DES)”,民间力量开始全面介入密码学的研究和应用中,采用的加密算法有DESRSASHA等。随着对加密强度需求的不断提高,近期又出现了AESECC等。

使用密码学可以达到以下目的:

保密性:防止用户的标识或数据被读取。

数据完整性:防止数据被更改。

身份验证:确保数据发自特定的一方。

加密算法介绍

根据密钥类型不同将现代密码技术分为两类:对称加密算法(秘密钥匙加密)和非对称加密算法(公开密钥加密)。

对称钥匙加密系统是加密和解密均采用同一把秘密钥匙,而且通信双方都必须获得这把钥匙,并保持钥匙的秘密。

非对称密钥加密系统采用的加密钥匙(公钥)和解密钥匙(私钥)是不同的。

对称加密算法

对称加密算法用来对敏感数据等信息进行加密,常用的算法包括:

DESData Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。

3DESTriple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。

AESAdvanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高;

AES

200010月,NIST(美国国家标准和技术协会)宣布通过从15种侯选算法中选出的一项新的密匙加密标准。Rijndael被选中成为将来的AESRijndael是在 1999 年下半年,由研究员 Joan Daemen Vincent Rijmen 创建的。AES 正日益成为加密各种形式的电子数据的实际标准。

美国标准与技术研究院 (NIST) 2002 5 26 日制定了新的高级加密标准 (AES) 规范。

算法原理

AES 算法基于排列和置换运算。排列是对数据重新进行安排,置换是将一个数据单元替换为另一个。AES 使用几种不同的方法来执行排列和置换运算。

AES 是一个迭代的、对称密钥分组的密码,它可以使用128192 256 位密钥,并且用 128 位(16字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换和替换输入数据

AES3DES的比较

算法名称

算法类型

密钥长度

速度

解密时间(建设机器每秒尝试255个密钥)

资源消耗

AES

对称block密码

128192256

1490000亿年

3DES

对称feistel密码

112位或168

46亿年

非对称算法

常见的非对称加密算法如下:

RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的;

DSADigital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准);

ECCElliptic Curves Cryptography):椭圆曲线密码编码学。

ECC

1976年,由于对称加密算法已经不能满足需要,Diffie Hellman发表了一篇叫《密码学新动向》的文章,介绍了公匙加密的概念,由RivetShamirAdelman提出了RSA算法。

随着分解大整数方法的进步及完善、计算机速度的提高以及计算机网络的发展,为了保障数据的安全,RSA的密钥需要不断增加,但是,密钥长度的增加导致了其加解密的速度大为降低,硬件实现也变得越来越难以忍受,这对使用RSA的应用带来了很重的负担,因此需要一种新的算法来代替RSA

1985N.KoblitzMiller提出将椭圆曲线用于密码算法,根据是有限域上的椭圆曲线上的点群中的离散对数问题ECDLPECDLP是比因子分解问题更难的问题,它是指数级的难度。

算法原理——椭圆曲线上的难题

 椭圆曲线上离散对数问题ECDLP定义如下:给定素数p和椭圆曲线E,对QkP,在已知PQ 的情况下求出小于p的正整数k。可以证明由kP计算Q比较容易,而由QP计算k则比较困难。

将椭圆曲线中的加法运算与离散对数中的模乘运算相对应,将椭圆曲线中的乘法运算与离散对数中的模幂运算相对应,我们就可以建立基于椭圆曲线的对应的密码体制。

例如,对应Diffie-Hellman公钥系统,我们可以通过如下方式在椭圆曲线上予以实现:在E上选取生成元P,要求由P产生的群元素足够多,通信双方AB分别选取abab 予以保密,但将aPbP公开,AB间通信用的密钥为abP,这是第三者无法得知的。

对应ELGamal密码系统可以采用如下的方式在椭圆曲线上予以实现:

将明文m嵌入到EPm点,选一点BE,每一用户都选一整数a0aNN为阶数已知,a保密,aB公开。欲向Am,可送去下面一对数偶:[kBPm+k(aAB)],k是随机产生的整数。A可以从kB求得k(aAB)。通过:Pm+k(aAB)- k(aAB)=Pm恢复Pm。同样对应DSA,考虑如下等式:

K=kG  [其中 KGEp(a,b)上的点,k为小于nn是点G的阶)的整数]

不难发现,给定kG,根据加法法则,计算K很容易;但给定KG,求k就相对困难了。

这就是椭圆曲线加密算法采用的难题。我们把点G称为基点(base point),kkn为基点G的阶)称为私有密钥(privte key),K称为公开密钥(public key) 

ECC与RSA的比较

ECCRSA相比,在许多方面都有对绝对的优势,主要体现在以下方面:

  1. Ø  抗攻击性强。相同的密钥长度,其抗攻击性要强很多倍。
  2. Ø  计算量小,处理速度快。ECC总的速度比RSADSA要快得多。
  3. Ø  存储空间占用小。ECC的密钥尺寸和系统参数与RSADSA相比要小得多,意味着它所占的存贮空间要小得多。这对于加密算法在IC卡上的应用具有特别重要的意义。
  4. Ø  带宽要求低。当对长消息进行加解密时,三类密码系统有相同的带宽要求,但应用于短消息时ECC带宽要求却低得多。带宽要求低使ECC在无线网络领域具有广泛的应用前景。

 

ECC的这些特点使它必将取代RSA,成为通用的公钥加密算法。比如SET协议的制定者已把它作为下一代SET协议中缺省的公钥密码算法。

下面两张表示是RSAECC的安全性和速度的比较:

 

攻破时间

(MIPS)

RSA/DSA

(密钥长度)

ECC

密钥长度

RSA/ECC

密钥长度比

104

512

106

51

108

768

132

61

1011

1024

160

71

1020

2048

210

101

1078

21000

600

351

RSAECC安全模长得比较

 

 功能

Security Builder 1.2

BSAFE 3.0

163ECC(ms)

1,023RSA(ms)

密钥对生成

3.8

4,708.3

签名

2.1(ECNRA)

228.4

3.0(ECDSA)

认证

9.9(ECNRA)

12.7

10.7(ECDSA)

Diffie—Hellman密钥交换

7.3

1,654.0

RSAECC速度比

散列是信息的提炼,通常其长度要比信息小得多,且为一个固定长度。加密性强的散列一定是不可逆的,这就意味着通过散列结果,无法推出任何部分的原始信息。任何输入信息的变化,哪怕仅一位,都将导致散列结果的明显变化,这称之为雪崩效应。散列还应该是防冲突的,即找不出具有相同散列结果的两条信息。具有这些特性的散列结果就可以用于验证信息是否被修改。

单向散列函数一般用于产生消息摘要,密钥加密等,常见的有:

  1. Ø MD5Message Digest Algorithm 5):是RSA数据安全公司开发的一种单向散列算法。
  2. Ø SHASecure Hash Algorithm):可以对任意长度的数据运算生成一个160位的数值;

SHA-1

1993年,安全散列算法(SHA)由美国国家标准和技术协会(NIST)提出,并作为联邦信息处理标准(FIPS PUB 180)公布;1995年又发布了一个修订版FIPS PUB 180-1,通常称之为SHA-1SHA-1是基于MD4算法的,并且它的设计在很大程度上是模仿MD4的。现在已成为公认的最安全的散列算法之一,并被广泛使用。

算法原理

SHA-1是一种数据加密算法,该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。

单向散列函数的安全性在于其产生散列值的操作过程具有较强的单向性。如果在输入序列中嵌入密码,那么任何人在不知道密码的情况下都不能产生正确的散列值,从而保证了其安全性。SHA将输入流按照每块512位(64个字节)进行分块,并产生20个字节的被称为信息认证代码或信息摘要的输出。

该算法输入报文的最大长度不超过264位,产生的输出是一个160位的报文摘要。输入是按512 位的分组进行处理的。SHA-1是不可逆的、防冲突,并具有良好的雪崩效应。

通过散列算法可实现数字签名实现,数字签名的原理是将要传送的明文通过一种函数运算(Hash)转换成报文摘要(不同的明文对应不同的报文摘要),报文摘要加密后与明文一起传送给接受方,接受方将接受的明文产生新的报文摘要与发送方的发来报文摘要解密比较,比较结果一致表示明文未被改动,如果不一致表示明文已被篡改。

MAC (信息认证代码)就是一个散列结果,其中部分输入信息是密码,只有知道这个密码的参与者才能再次计算和验证MAC码的合法性。

 

SHA-1MD5的比较

因为二者均由MD4导出,SHA-1MD5彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同:

  1. Ø  对强行供给的安全性:最显著和最重要的区别是SHA-1摘要比MD5摘要长32 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD52128数量级的操作,而对SHA-1则是2160数量级的操作。这样,SHA-1对强行攻击有更大的强度。
  2. Ø  对密码分析的安全性:由于MD5的设计,易受密码分析的攻击,SHA-1显得不易受这样的攻击。
  3. Ø  速度:在相同的硬件上,SHA-1的运行速度比MD5慢。

  

对称与非对称算法比较

以上综述了两种加密方法的原理,总体来说主要有下面几个方面的不同:

  1. Ø  在管理方面:公钥密码算法只需要较少的资源就可以实现目的,在密钥的分配上,两者之间相差一个指数级别(一个是n一个是n2)。所以私钥密码算法不适应广域网的使用,而且更重要的一点是它不支持数字签名。
  2. Ø  在安全方面:由于公钥密码算法基于未解决的数学难题,在破解上几乎不可能。对于私钥密码算法,到了AES虽说从理论来说是不可能破解的,但从计算机的发展角度来看。公钥更具有优越性。
  3. Ø  从速度上来看:AES的软件实现速度已经达到了每秒数兆或数十兆比特。是公钥的100倍,如果用硬件来实现的话这个比值将扩大到1000倍。

.          加密算法的选择

前面的章节已经介绍了对称解密算法和非对称加密算法,有很多人疑惑:那我们在实际使用的过程中究竟该使用哪一种比较好呢?

我们应该根据自己的使用特点来确定,由于非对称加密算法的运行速度比对称加密算法的速度慢很多,当我们需要加密大量的数据时,建议采用对称加密算法,提高加解密速度。

对称加密算法不能实现签名,因此签名只能非对称算法。

由于对称加密算法的密钥管理是一个复杂的过程,密钥的管理直接决定着他的安全性,因此当数据量很小时,我们可以考虑采用非对称加密算法。

在实际的操作过程中,我们通常采用的方式是:采用非对称加密算法管理对称算法的密钥,然后用对称加密算法加密数据,这样我们就集成了两类加密算法的优点,既实现了加密速度快的优点,又实现了安全方便管理密钥的优点。

如果在选定了加密算法后,那采用多少位的密钥呢?一般来说,密钥越长,运行的速度就越慢,应该根据的我们实际需要的安全级别来选择,一般来说,RSA建议采用1024位的数字,ECC建议采用160位,AES采用128为即可。

你可能感兴趣的:(SSL证书)