就是一组无序数组排序,先用从一个数开始依次与后面的数比较满足条件换位,直到所有的数都比较了一遍之后,数组变为一个有序数组。
放一个不知道在哪盗的图:
这个图就展现了一个完整的冒泡排序的过程。
def bubbleSort0(nums):
#第一层循环确定循环次数,最后一个数不需要参与循环所以要用长度-1
for i in range(len(nums)-1):
#第二层循环依次比较大小,确定好的不用比较所以-i
for j in range(len(nums)-i-1):
if nums[j] < nums[j+1]:
nums[j],nums[j+1]=nums[j+1],nums[j]
return nums
那么基本的冒泡排序有什么问题呢,举个例子,比如说现在有一个数组是[1,6,5,4,3,2],那么经过一次排序之后数组变成了[6,5,4,3,2,1],这时候数组已经是有序的了,但是计算机不知道,它还会继续把所有循环全部做完,这样就浪费了很多的时间,所以我们可以设置一个标识,用来表示是否进行了换位,如果没有换位那就是表示数组已经有序了,直接停止循环。
def bubbleSort1(nums):
for i in range(len(nums)-1):
flag = False #假设没有做交换,此时应该退出循环
for j in range(len(nums)-i-1):
if nums[j] < nums[j+1]:
nums[j],nums[j+1]=nums[j+1],nums[j]
flag = True #做了交换标识符为True,继续与下一个比较
if not flag: #没有做交换则break
break
return nums
这个进化版的冒泡排序我做了一个简单的标识,这样可以在数组有序后立刻停止循环。
def bubbleSort2(nums):
low,high = 0,len(nums)-1 #因为要从前后双向排序,所以设定前后边界
while low nums[j-1]:
nums[j], nums[j-1] = nums[j-1], nums[j]
flag = j
low = flag
# print(low)
return nums
双向排序的核心思想就是利用不断变化的前后边界来缩小未排序的数组大小。
def bubbleSort3(nums):
for i in range(len(nums)-1):
for j in range(i+1,len(nums)-1): #从未排序数组的第一个数开始比较
if nums[i]
大家可以看到这个方法是每次都把未排序的第一个数与后面的比较,然后放在排序好的队列的最后面,不算是优化但是个人感觉这个比第一版更好理解。
你可能感兴趣的:(算法)
- Oracle SQL Plan Management(SPM)技术原理详解
El Shaddai.plus
oracle数据库的牛逼功能oraclesql数据库
OracleSQLPlanManagement(SPM)技术原理详解一、概述:为什么需要SPM?在Oracle数据库中,SQL语句的执行计划(ExecutionPlan)是优化器(CBO)根据统计信息、系统参数和对象结构生成的逻辑操作步骤。然而,以下场景可能导致执行计划不稳定:统计信息更新:表或索引的统计信息变化可能导致优化器选择不同的计划。数据库升级:新版本的优化器算法可能生成更高效(或更低效)
- 常用特征检测算法SURF、SIFT、ORB和FAST
super尚
图像处理算法人工智能计算机视觉
特征检测算法SURF算法特征检测的视觉不变性是一个非常重要的概念。但是要解决尺度不变性问题,难度相当大。为解决这一问题,计算机视觉界引入了尺度不变特征的概念。它的理念是,不仅在任何尺度下拍摄的物体都能检测到一致的关键点,而且每个被检测的特征点都对应一个尺度因子。理想情况下,对于两幅图像中不同尺度的的同一个物体点,计算得到的两个尺度因子之间的比率应该等于图像尺度的比率。近几年,人们提出了多种尺度不变
- 深入解析BFS算法:C++实现无权图最短路径的高效解决方案
Exhausted、
算法c++算法开发语言宽度优先数据结构
在无权图中,广度优先搜索(BFS)是解决最短路径问题的高效算法。接下来博主从专业角度深入探讨其实现细节,并给出C++代码示例:目录一、核心原理二、算法步骤三、C++实现关键点1.数据结构2.边界检查3.路径回溯(可选)四、代码实现五、路径回溯实现六、复杂度分析七、适用场景与限制一、核心原理BFS按层遍历节点,确保首次到达目标节点的路径是最短的。其核心特性为:队列管理:先进先出(FIFO)保证按层扩
- 计算机视觉之图像处理-----SIFT、SURF、FAST、ORB 特征提取算法深度解析
三年呀
计算机视觉图像处理算法深度学习python目标检测机器学习
SIFT、SURF、FAST、ORB特征提取算法深度解析前言在图像处理领域亦或是计算机视觉中,首先我们需要先理解几个名词:什么是尺度不变?在实际场景中,同一物体可能出现在不同距离(如远处的山和近处的树),导致其在图像中的尺度不同,也引出了多尺度的概念。算法检测到的特征在图像缩放(放大或缩小)后仍能被正确识别和匹配,即尺度不变性。什么是旋转不变?物体在现实中的朝向可能任意(如手机横屏/竖屏拍摄同一物
- 雪花算法应用
蚂蚁在飞-
后端
什么是雪花算法?雪花算法是由Twitter开源的分布式ID生成算法,用于生成64位的长整型唯一ID。其结构如下:-1位符号位:始终为0-41位时间戳:精确到毫秒-10位工作机器ID:包含5位数据中心ID和5位机器ID-12位序列号:同一毫秒内的自增序号Golang实现以下是一个完整的Golang实现:packagesnowflakeimport("sync""time""errors")//Sno
- 第一篇:从技术架构视角解析DeepSeek的AI底层逻辑
python算法(魔法师版)
deepseek专栏架构人工智能
——如何通过算法创新与算力优化实现智能跃迁近年来,DeepSeek作为中国AI领域的新锐力量,其技术架构的独特性引发行业高度关注。本文将从技术底层视角,拆解其核心模块设计、算力分配策略与算法进化路径,揭示其快速崛起的工程密码。1.模块化架构:MoE模型的场景适应性突破DeepSeek采用混合专家模型(MixtureofExperts)的变体设计,在千亿参数规模下实现动态任务分配。通过引入「稀疏激活
- 【洛谷】P1886 滑动窗口 /【模板】单调队列,经典!
SiMmming
算法算法c++数据结构
目录题目AC代码详解deque语法一道经典的单调队列模板题!!“如果一个选手比你小还比你强,你就可以退役了。”——单调队列的原理——算法学习笔记(66):单调队列-知乎题目P1886滑动窗口/【模板】单调队列-洛谷【普及/提高-】AC代码#includeusingnamespacestd;intn,m;structNode{intid;//编号intval;//大小};dequeq1;//min,
- 冠军算法变体合集再上新!具有新的变异策略和外部归档机制的改进LSHADE-SPACMA算法
群智能算法小狂人
算法
1简介算法提出了一种用于数值优化和点云配准的LSHADE-SPACMA(mLSHADE-SPACMA)的修改版本。首先,提出了一种精确的消除和生成机制,以增强算法的局部开发能力。其次,引入了一种基于改进的半参数自适应策略和基于秩的选择压力的变异策略,改进了算法的进化方向。第三,提出了一种基于精英的外部归档机制,保证了外部种群的多样性,可以加速算法的收敛进度。2.7LSHADE-SPACMA2.7.
- 算法的解题模式Ⅳ
槑呆呆05
算法的解题模式算法
10.二叉树遍历(BinaryTreeTraversal)二叉树遍历是指按照某种顺序依次访问二叉树中的每个节点,使得每个节点仅被访问一次。前序遍历:根->左->右中序遍历:左->根->右后序遍历:左->右->根示例:输入:root=[1,null,2,3]输出:[1,3,2]解释:中序遍历按照左、根、右的顺序访问节点。可使用递归或栈来按此顺序遍历树。力扣相关题目:257.二叉树的所有路径230.二
- BFS算法——层层推进,最短之路,广度优先搜索算法的诗意旅程(下)
诚丞成
常用算法讲解算法宽度优先
文章目录引言一.迷宫中离入口最近的出口1.1题目链接:https://leetcode.cn/problems/nearest-exit-from-entrance-in-maze/1.2题目分析:1.3思路讲解:1.4代码实现:二.最小基因变化2.1题目链接:https://leetcode.cn/problems/minimum-genetic-mutation/description/2.2
- 深度学习模型的全面解析:技术进展、应用场景与未来趋势
阿尔法星球
深度学习与神经网络实战机器学习
1.深度学习模型概述1.1深度学习模型的定义与分类深度学习模型是基于人工神经网络的算法,它们通过模仿人脑的处理机制来学习数据中的复杂模式和特征。这些模型可以根据其结构和应用场景被分为不同的类别,包括但不限于卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)、生成对抗网络(GAN)和Transformer模型等。1.2深度学习模型的关键特点深度学习模型的关键特点在于其深度,即
- 基于深度学习的钢材表面缺陷检测系统:UI界面 + R-CNN + 数据集
深度学习&目标检测实战项目
R-CNN检测系统深度学习uir语言开发语言计算机视觉cnn人工智能
在制造业中,钢材表面缺陷的检测是保证产品质量和生产效率的关键环节。随着工业自动化水平的提高,传统的人工检测已经无法满足快速、精确的检测要求。基于深度学习的钢材表面缺陷检测系统能够通过计算机视觉自动识别钢材表面的缺陷类型和位置,极大地提升了检测的准确性和效率。本文将详细介绍如何基于深度学习、R-CNN算法和自定义数据集构建一个钢材表面缺陷检测系统。内容涵盖从数据准备、R-CNN模型训练到UI界面设计
- 洛谷题单python解 【算法1-1】模拟与高精度
Keyk__
算法python开发语言
P1009[NOIP1998普及组]阶乘之和deffac(n):ifn==0orn==1:return1else:returnn*fac(n-1)s=int(input())fac_sum=0forjinrange(1,s+1):fac_sum+=fac(j)print(str(fac_sum))
- C语言学习,插入排序
五味香
c语言学习排序算法算法开发语言android数据结构
C语言,插入排序是一种简单直观的排序算法,插入排序是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。示例://插入排序函数voidinsertionSort(intarr[],intn){for(inti=1;i=0&&arr[j]>key){arr[j+1]=arr[j];j=j-1;}arr[j+1]=key;}}//打印voidprintArray(inta
- java设计模式单件模式_Head First设计模式(5):单件模式
weixin_39822493
java设计模式单件模式
更多的可以参考我的博客,也在陆续更新inghttp://www.hspweb.cn/单件模式确保一个类只有一个实例,并提供一个全局访点。例子:学生的学号生成方案,是在学生注册后,通过录入学生的基本信息,包括入学学年、学院、专业、班级等信息后,保存相应的资料后自动生成的。学号生成器的业务算法为:入学学年(2位)+学院代码(2位)+专业代码(2位)+班级代码(2位)+序号(2位)1.目录image2.
- 基于ThinkPHP 5~8兼容的推荐算法类实现,
极梦网络无忧
自建推荐算法算法机器学习
在现代推荐系统中,随着用户量和物品量的增长,传统的推荐算法可能会面临性能瓶颈。本文将介绍如何基于ThinkPHP实现一个高性能的推荐系统,结合显性反馈(如兴趣选择)、隐性反馈(如观看时长、评论、点赞、搜索等)、行为序列分析和关键词拆分(支持中文)等功能,并通过优化方案支持大规模用户场景。目录推荐系统简介数据库设计推荐算法类的实现优化方案总结与扩展推荐系统简介推荐系统的目标是根据用户的历史行为,预测
- 计算机考研之数据结构:大 O 记号
CS创新实验室
考研复习408考研数据结构
《数据结构》不仅是计算机考研408的必考科目,也是很多自命题学校要考的科目。这里将刊登系列文章,对《数据结构》这门课的某些问题进行讲解,供学习者参考。在计算机科学领域,算法的效率至关重要。随着数据规模的不断增大,一个高效的算法能够显著提升系统性能,而低效的算法则可能导致程序运行缓慢甚至无法正常工作。为了准确评估算法的效率,我们需要一种科学的方法来衡量算法随着输入规模增长时的运行时间或空间使用情况。
- Spark MLlib中的机器学习算法及其应用场景
Java资深爱好者
深度学习推荐算法
SparkMLlib是ApacheSpark框架中的一个机器学习库,提供了丰富的机器学习算法和工具,用于处理和分析大规模数据。以下是SparkMLlib中的机器学习算法及其应用场景的详细描述:一、SparkMLlib中的机器学习算法分类算法:逻辑回归:用于二分类问题,通过最大化对数似然函数来估计模型参数。支持向量机(SVM):用于分类和回归问题,通过寻找一个超平面来最大化不同类别之间的间隔。决策树
- 实测|用DeepSeek批量生成头条爆款标题,1小时搞定1周工作量!效率提升300%的秘诀全公开
kang_deepsk
AI写作人工智能ai
一、[痛点直击]创作者的标题困境标题内卷:头条每天新增200万条内容,90%的文章因标题平庸被算法“雪藏”。时间黑洞:人工想1个爆款标题平均耗时15分钟,团队日均消耗6小时。数据玄学:模仿热门标题却跑不出量,平台规则变化永远追不上。用户共鸣:“上月写了30篇优质长文,阅读量全不过万,问题竟出在标题上!”——某科技领域创作者自述二、[技术革命]DeepSeek的标题生成黑科技1.爆款基因解码系统实时
- 八大经典排序算法
BUG 劝退师
算法c语言排序算法算法数据结构
八大经典排序算法目录算法概览算法详解冒泡排序选择排序插入排序希尔排序归并排序快速排序堆排序计数排序性能对比1.算法概览排序算法平均时间复杂度空间复杂度稳定性排序方式冒泡排序O(n²)O(1)稳定In-place选择排序O(n²)O(1)不稳定In-place插入排序O(n²)O(1)稳定In-place希尔排序O(nlogn)O(1)不稳定In-place归并排序O(nlogn)O(n)稳定Out
- Vue中虚拟DOM的全面解析
七公子77
vuevue.js前端javascript
一、虚拟DOM的核心概念虚拟DOM(VirtualDOM)是一个轻量级的JavaScript对象,它是对真实DOM的抽象表示。在Vue中,组件模板会被编译成虚拟DOM树,通过Diff算法对比新旧虚拟DOM,计算出最小化的DOM操作,最终批量更新真实DOM。二、为什么需要虚拟DOM?1.直接操作DOM的问题性能瓶颈:DOM操作是浏览器中最昂贵的操作之一,频繁操作会导致性能下降。手动优化困难:开发者需
- 程序三大结构详解:顺序、选择、循环
禁小默
C算法数据结构c++pythonjava
目录前言一、顺序结构二、选择结构1.单分支结构2.双分支结构3.多分支结构4.条件匹配结构三、循环结构1.for循环2.while循环3.do-while循环四、总结与建议前言程序设计中,顺序结构、选择结构、循环结构是最基本的控制结构,也是任何程序的核心组成部分。这三种结构可以组合成任意复杂的算法,掌握它们是学习编程的第一步。本文将详细讲解这三种结构的定义、特点,并结合实际示例帮助理解其应用。一、
- ssd训练自己的数据集
reset2021
目标检测目标检测python深度学习人工智能pytorch
基于SSD算法实现对自己数据集的训练与检测。(该专题以操作为主)SSD是一种非常优秀的one-stage目标检测方法,one-stage算法就是目标检测和分类是同时完成的,其主要思路是利用CNN提取特征后,均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,物体分类与预测框的回归同时进行,整个过程只需要一步,所以其优势是速度快。这篇文档主要讲述怎样用SSD算法来实现对自己数据集的训
- 【算法通关村 Day7】递归与二叉树遍历
Ava_J
算法数据结构
递归与二叉树遍历青铜挑战理解递归递归算法是指一个方法在其执行过程中调用自身。它通常用于将一个问题分解为更小的子问题,通过重复调用相同的方法来解决这些子问题,直到达到基准情况(终止条件)。递归算法通常包括两个主要部分:基准情况(也叫递归终止条件):当问题规模足够小,递归可以停止,通常返回一个简单的结果。递归部分:将问题分解成更小的子问题,并在递归过程中调用自身。为了更清晰地说明递归,我给你一个经典的
- 嵌入式人工智能应用-第四章 KNN 算法介绍 3
数贾电子科技
嵌入式人工智能应用人工智能算法linuxknn
KNN算法介绍1KNN介绍1.1基本概念1.1.1主要步骤1.1.2.距离计算:1.1.3进行预测:2分类介绍2.1KNN算法的K值说明2.2K值的选取2.3距离计算2.4KNN算法特点2.5KNN算法流程3实验验证3.1实验代码-具体代码可以从附件下载3.2演示效果1KNN介绍K邻近(K-NearestNeighbors,KNN)是一种广泛使用的监督学习算法,主要用于分类和回归任务。以下是K邻近
- 美国第3代哈希散列算法之SHA3(Keccak)
黄金龙PLUS
Hash算法哈希算法算法密码学人工智能网络安全
目录(1)Keccak算法简介(2)消息填充规则(3)海绵结构的实现过程(4)内部状态及表示方法(5)Keccak-f置换美国第3代哈希散列算法之SHA3(Keccak)(1)Keccak算法简介Keccak算法是美国国家标准与技术研究院(NIST)发起的SHA3竞赛的获胜算法,采用的是新型的海绵结构。根据摘要值长度的不同可以分为Keccak224、Keccak256、Keccak384、Kecc
- 蓝桥杯学习大纲
ん贤
蓝桥杯算法数据结构
(致酷德与热爱算法、编程的小伙伴们)在查阅了相当多的资料后,发现没有那篇博客、文章很符合我们备战蓝桥杯的学习路径。所以,干脆自己整理一篇,欢迎大家补充!一、蓝桥必备高频考点我们以此为重点学习方向:1.基础算法枚举模拟贪心递归分治构造前缀和差分2.搜索与排序线性搜索二分法BFSDFS回溯剪枝深搜优化记忆化搜索位运算冒泡排序归并排序快速排序桶排序3.动态规划编辑距离最长不重复子串整数背包矩阵连乘最长公
- 【Python 语法】heapq 模块
一杯水果茶!
python
堆的应用场景主要功能示例:使用`heapq`实现优先队列heapq是Python标准库中用于实现堆队列(heapqueue)算法的模块。堆队列是一个基于堆(heap)数据结构的优先队列,它能在O(logn)时间内执行插入、删除最小元素等操作。Python中的heapq模块实现的是一个最小堆(min-heap),即堆顶元素是堆中的最小元素。堆的应用场景优先队列:heapq可以用来实现优先队列,按优先
- 高斯混合模型(GMM)与K均值算法(K-means)算法的异同
路野yue
人工智能机器学习聚类
高斯混合模型(GaussianMixtureModel,GMM)和K均值(K-Means)算法都是常用于聚类分析的无监督学习方法,虽然它们的目标都是将数据分成若干个类别或簇,但在实现方法、假设和适用场景上有所不同。1.模型假设K均值(K-Means):假设每个簇的样本点在簇中心附近呈均匀分布,通常是球形的(即每个簇的数据点彼此之间的距离相对均匀,具有相同的方差)。每个簇通过一个中心点来表示(即质心
- 初识pytorch
m0_73286250
pytorch人工智能python
一、AI发展史二、什么是深度学习深度学习是机器学习的一个子集。为了更好地理解这种关系,我们可以将它们放在人工智能(AI)的大框架中来看。机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:三、扩展1.使用场景1)图像识别和处理2)自然语言处理(NLP)3)音频处理4)视频分析5)游戏和仿真6)自动驾驶汽车7)
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置