NVIDIA(英伟达)开源了StyleGAN,用它可以生成令人惊讶的逼真人脸;也可以像某些人所说的,生成专属于自己的老婆动漫头像。这些生成的人脸或者动漫头像都是此前这个世界上从来没有过的,完全是被“伟大的你”所创造出来的。
StyleGAN的源码可以到这里下载:
https://github.com/NVlabs/stylegan
有好事者把StyleGAN的论文翻译成中文,虽然阅读起来也并不是很容易懂,但还是比看英文论文要容易多了:
https://blog.csdn.net/a312863063/article/details/88761977
那么问题来了,怎样试一试StyleGAN的神奇魔力呢?
步骤如下:
(1)拥有或安装NVIDIA(英伟达)的显卡,比如:我的HP笔记本的操作系统是Windows 10,带有NVIDIA GeForce GTX 1060显卡,虽然配置并不高,也一样可以把StyleGAN跑起来;
(2)安装cuda 、cudnn、tensorflow-gpu 、 pillow等模块,建议使用Anaconda来安装,具体过程可以参考:
https://blog.csdn.net/weixin_41943311/article/details/91866987
https://blog.csdn.net/weixin_41943311/article/details/93747924
(3)下载StyleGAN源码:
下载完成后,把ZIP包解压缩,放到自己的工作目录下。
(4)下载模型文件:
有好事者已经把文件放到了百度网盘上,这样下载起来比较方便,
(4.1)已训练好的人脸模型(各个人种都有,但黄种人脸偏少,1024x1024):karras2019stylegan-ffhq-1024x1024.pkl
百度网盘:https://pan.baidu.com/s/1ujItgpnHSw14Fw8I3Ai7Jw
提取码:ossw
(4.2)已训练好的动漫头像模型(日本动漫少女为主,512x512):2019-03-08-stylegan-animefaces-network-02051-021980.pkl
百度网盘:https://pan.baidu.com/s/1KmauV9eEho9v6nINAdRmKA
提取码:dnbd
(4.3)一位中国研究生,从FFHQ人脸数据集中筛选了一些黄种人脸进行训练,生成了黄种人的人脸模型(1024x1204):generator_yellow.pkl
百度网盘:https://pan.baidu.com/s/18cpaM6wJg4ozmwlFNY21kw
提取码:fx23
(5)修改生成人脸或少女动漫头像的文件
(5.1)进入stylegan-master目录(如:F:\AI\stylegan-master),创建cache目录,把人脸模型和动漫头像模型复制到cache目录下;
(5.2)修改pretrained_example.py文件,或者按下面的内容创建自己的pretrained_example001.py文件:
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
"""Minimal script for generating an image using pre-trained StyleGAN generator."""
import os
import pickle
import numpy as np
import PIL.Image
import dnnlib
import dnnlib.tflib as tflib
import config
import glob
import random
PREFIX = 'Person'
#PREFIX = 'Animation'
SEED = random.randint(0,18000)
def main():
# Initialize TensorFlow.
tflib.init_tf()
# Load pre-trained network.
Model = './cache/karras2019stylegan-ffhq-1024x1024.pkl'
#Model = './cache/generator_yellow.pkl'
#Model = './cache/2019-03-08-stylegan-animefaces-network-02051-021980.pkl'
model_file = glob.glob(Model)
if len(model_file) == 1:
model_file = open(model_file[0], "rb")
else:
raise Exception('Failed to find the model')
_G, _D, Gs = pickle.load(model_file)
# _G = Instantaneous snapshot of the generator. Mainly useful for resuming a previous training run.
# _D = Instantaneous snapshot of the discriminator. Mainly useful for resuming a previous training run.
# Gs = Long-term average of the generator. Yields higher-quality results than the instantaneous snapshot.
# Print network details.
Gs.print_layers()
# Pick latent vector.
rnd = np.random.RandomState(SEED)
latents = rnd.randn(1, Gs.input_shape[1])
# Generate image.
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
# Save image.
os.makedirs(config.result_dir, exist_ok=True)
save_name = PREFIX + '_' + str(random.getrandbits(64)) + '.png'
save_path = os.path.join(config.result_dir, save_name)
PIL.Image.fromarray(images[0], 'RGB').save(save_path)
if __name__ == "__main__":
main()
上面的Python文件是用来生成人脸的,如果需要生成动漫头像,只需要把
Model = './cache/karras2019stylegan-ffhq-1024x1024.pkl'
或:Model = './cache/generator_yellow.pkl'
修改为:
Model = './cache/2019-03-08-stylegan-animefaces-network-02051-021980.pkl'
即可。
(5.3)在stylegan-master目录下运行程序:python pretrained_example001.py
(5.4)到stylegan-master/results目录下查看生成的图像,That's all.
(5.5)也可以批量生成人脸或动漫头像,按下面的内容创建自己的pretrained_example002.py文件:
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
"""Minimal script for generating an image using pre-trained StyleGAN generator."""
import os
import pickle
import numpy as np
import PIL.Image
import dnnlib
import dnnlib.tflib as tflib
import config
import glob
import random
PREFIX = 'Person'
#PREFIX = 'Animation'
TIMES_LOOP = 100
def main():
# Initialize TensorFlow.
tflib.init_tf()
# Load pre-trained network.
Model = './cache/generator_yellow.pkl'
#Model = './cache/karras2019stylegan-ffhq-1024x1024.pkl'
#Model = './cache/2019-03-08-stylegan-animefaces-network-02051-021980.pkl'
model_file = glob.glob(Model)
if len(model_file) == 1:
model_file = open(model_file[0], "rb")
else:
raise Exception('Failed to find the model')
_G, _D, Gs = pickle.load(model_file)
# _G = Instantaneous snapshot of the generator. Mainly useful for resuming a previous training run.
# _D = Instantaneous snapshot of the discriminator. Mainly useful for resuming a previous training run.
# Gs = Long-term average of the generator. Yields higher-quality results than the instantaneous snapshot.
# Print network details.
Gs.print_layers()
for i in range(TIMES_LOOP):
# Pick latent vector.
SEED = random.randint(0, 18000)
rnd = np.random.RandomState(SEED)
latents = rnd.randn(1, Gs.input_shape[1])
# Generate image.
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
# Generate and Save image.
os.makedirs(config.result_dir, exist_ok=True)
save_name = PREFIX + '_' + str(random.getrandbits(64)) + '.png'
save_path = os.path.join(config.result_dir, save_name)
PIL.Image.fromarray(images[0], 'RGB').save(save_path)
if __name__ == "__main__":
main()
然后,在stylegan-master目录下运行程序:python pretrained_example002.py
生成的黄种人头像:
生成的动漫少女头像:
对StyleGAN生成的人脸和动漫头像,你有什么评价?
参考:
https://www.gongyesheji.org/?p=963
http://www.seeprettyface.com/
(完)
后续文章:
轻轻松松使用StyleGAN(二):源代码初探+中文注释,generate_figure.py
轻轻松松使用StyleGAN(三):基于ResNet50构造StyleGAN的逆向网络,从目标图像提取特征码
轻轻松松使用StyleGAN(四):对StyleGAN的逆向网络的训练过程进行优化
轻轻松松使用StyleGAN(五):提取真实人脸特征码的一些探索
轻轻松松使用StyleGAN(六):StyleGAN Encoder找到真实人脸对应的特征码,核心源代码+中文注释
轻轻松松使用StyleGAN(七):用StyleGAN Encoder为女朋友制作美丽头像