「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)

https://www.toutiao.com/a6651792282443842055/

 

2019-01-29 13:51:18

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第1张图片

 

【新智元导读】Hugo Larochelle是谷歌大脑的研究员、深度学习领域的专家。他在最近的演讲中讨论了小样本学习这个主题,概述了这个领域的一些最新进展,存在的挑战以及研究机会。

深度学习的成功部分是由于大量有标记数据的可用性。然而,即使在大数据背景下的今天,想获取具有大量优质的、标签正确的数据的数据集,仍是一个难题。

近年小样本学习(Few-shot Learning)的发展,旨在解决这个问题。小样本学习属于迁移学习的一种。顾名思义,小样本学习是一种能够让深度学习(或者任何机器学习算法)通过更少的样本学习,而不像传统的那样使用大量样本的技术。

Hugo Larochelle是谷歌大脑的研究员,深度学习领域的专家。他在最近的一个workshop中,讨论了元学习(Meta-learning)这个主题。元学习是一个非常有前途的框架,用于解决从少量数据进行泛化的问题,即所谓的小样本学习。

在元学习中,我们的模型本身就是一种学习算法:它将输入作为训练集,并输出一个分类器。对于 few-shot learning,直接训练产生的分类器具有良好的泛化性能,适用于只有非常少的标记数据的问题。

在这个workshop中,Hugo Larochelle概述了最近这个主题上取得的一些最新进展,并讨论了仍然存在的挑战和研究机会。

以下是Hugo Larochelle讲座的PPT,文末附下载链接。

内容概要

元学习(Meta-learning)

选择一种Meta-learning

定义meta-learner的两种方法:

从已知的学习算法得到启发

  • kNN/kernel machine: Matching networks (Vinyals et al. 2016)
  • 高斯分类器:Prototypical Networks (Snell et al. 2017)
  • 梯度下降法:(Ravi & Larochelle, 2017) , MAML (Finn et al. 2017)

从黑盒神经网络推导

  • SNAIL (Mishra et al. 2018)

存在的挑战:

超越有监督分类

  • 无监督学习、结构化输出、互动学习

超越Mini-ImageNet

  • 对问题/数据集的分布给出一个现实的定义

Meta-Dataset

小结:

  • Meta-training 的分布可以产生很大的不同(至少对于目前的方法而言)
  • 使用“常规训练”作为初始化会产生很大的不同
  • 需要调整MAML以使其更具鲁棒

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第2张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第3张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第4张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第5张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第6张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第7张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第8张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第9张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第10张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第11张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第12张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第13张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第14张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第15张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第16张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第17张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第18张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第19张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第20张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第21张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第22张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第23张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第24张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第25张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第26张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第27张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第28张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第29张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第30张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第31张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第32张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第33张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第34张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第35张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第36张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第37张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第38张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第39张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第40张图片

 

 

「干货」谷歌大脑:元学习最新进展与挑战(40 PPT下载)_第41张图片

 

 

PPT下载:

http://metalearning.ml/2018/slides/meta_learning_2018_Larochelle.

你可能感兴趣的:(人工智能)