Kubernetes多master场景下,核心组件都是以一主多从的模式来运行的,在前面scheduler部分的文章中,并没有分析其主从选举及工作的流程,那么在本篇中,以controller为例,单独作一篇分析组件之间主从工作模式。
如scheduler一样,controller的cmd启动也是借助的cobra,对cobra不了解可以回到前面的文章中查看,这里不再赘述,直接顺着入口找到启动函数:
==> cmd/kube-controller-manager/controller-manager.go:38
command := app.NewControllerManagerCommand()
==> cmd/kube-controller-manager/app/controllermanager.go:109
Run(c.Complete(), wait.NeverStop)
==> cmd/kube-controller-manager/app/controllermanager.go:153
func Run(c *config.CompletedConfig, stopCh <-chan struct{}) error {}
入口函数就在这里,代码块中已分段注释:
func Run(c *config.CompletedConfig, stopCh <-chan struct{}) error {
...
// 篇幅有限,省略部分代码
// 启动kube-controller的http服务
// Start the controller manager HTTP server
// unsecuredMux is the handler for these controller *after* authn/authz filters have been applied
var unsecuredMux *mux.PathRecorderMux
if c.SecureServing != nil {
unsecuredMux = genericcontrollermanager.NewBaseHandler(&c.ComponentConfig.Generic.Debugging, checks...)
handler := genericcontrollermanager.BuildHandlerChain(unsecuredMux, &c.Authorization, &c.Authentication)
// TODO: handle stoppedCh returned by c.SecureServing.Serve
if _, err := c.SecureServing.Serve(handler, 0, stopCh); err != nil {
return err
}
}
if c.InsecureServing != nil {
unsecuredMux = genericcontrollermanager.NewBaseHandler(&c.ComponentConfig.Generic.Debugging, checks...)
insecureSuperuserAuthn := server.AuthenticationInfo{Authenticator: &server.InsecureSuperuser{}}
handler := genericcontrollermanager.BuildHandlerChain(unsecuredMux, nil, &insecureSuperuserAuthn)
if err := c.InsecureServing.Serve(handler, 0, stopCh); err != nil {
return err
}
}
// 启动controller工作的run函数,特别标注,会作为回调函数在leader选举成功后执行
run := func(ctx context.Context) {
rootClientBuilder := controller.SimpleControllerClientBuilder{
ClientConfig: c.Kubeconfig,
}
var clientBuilder controller.ControllerClientBuilder
if c.ComponentConfig.KubeCloudShared.UseServiceAccountCredentials {
if len(c.ComponentConfig.SAController.ServiceAccountKeyFile) == 0 {
// It'c possible another controller process is creating the tokens for us.
// If one isn't, we'll timeout and exit when our client builder is unable to create the tokens.
klog.Warningf("--use-service-account-credentials was specified without providing a --service-account-private-key-file")
}
clientBuilder = controller.SAControllerClientBuilder{
ClientConfig: restclient.AnonymousClientConfig(c.Kubeconfig),
CoreClient: c.Client.CoreV1(),
AuthenticationClient: c.Client.AuthenticationV1(),
Namespace: "kube-system",
}
} else {
clientBuilder = rootClientBuilder
}
controllerContext, err := CreateControllerContext(c, rootClientBuilder, clientBuilder, ctx.Done())
if err != nil {
klog.Fatalf("error building controller context: %v", err)
}
saTokenControllerInitFunc := serviceAccountTokenControllerStarter{rootClientBuilder: rootClientBuilder}.startServiceAccountTokenController
if err := StartControllers(controllerContext, saTokenControllerInitFunc, NewControllerInitializers(controllerContext.LoopMode), unsecuredMux); err != nil {
klog.Fatalf("error starting controllers: %v", err)
}
controllerContext.InformerFactory.Start(controllerContext.Stop)
close(controllerContext.InformersStarted)
select {}
}
if !c.ComponentConfig.Generic.LeaderElection.LeaderElect {
run(context.TODO())
panic("unreachable")
}
id, err := os.Hostname()
if err != nil {
return err
}
// add a uniquifier so that two processes on the same host don't accidentally both become active
id = id + "_" + string(uuid.NewUUID())
rl, err := resourcelock.New(c.ComponentConfig.Generic.LeaderElection.ResourceLock,
"kube-system",
"kube-controller-manager",
c.LeaderElectionClient.CoreV1(),
c.LeaderElectionClient.CoordinationV1(),
resourcelock.ResourceLockConfig{
Identity: id,
EventRecorder: c.EventRecorder,
})
if err != nil {
klog.Fatalf("error creating lock: %v", err)
}
// 主从选举从这里开始
leaderelection.RunOrDie(context.TODO(), leaderelection.LeaderElectionConfig{
Lock: rl,
LeaseDuration: c.ComponentConfig.Generic.LeaderElection.LeaseDuration.Duration,
RenewDeadline: c.ComponentConfig.Generic.LeaderElection.RenewDeadline.Duration,
RetryPeriod: c.ComponentConfig.Generic.LeaderElection.RetryPeriod.Duration,
Callbacks: leaderelection.LeaderCallbacks{
// 回调函数,选举成功后,主工作节点开始运行上方的工作run函数
OnStartedLeading: run,
OnStoppedLeading: func() {
klog.Fatalf("leaderelection lost")
},
},
WatchDog: electionChecker,
Name: "kube-controller-manager",
})
panic("unreachable")
}
从这里可以看到,选举成为主领导节点后,才会进入工作流程,先跳过具体的工作流程,来看看leaderelection的选举过程
==> cmd/kube-controller-manager/app/controllermanager.go:252
leaderelection.RunOrDie(context.TODO(), leaderelection.LeaderElectionConfig{}
func RunOrDie(ctx context.Context, lec LeaderElectionConfig) {
le, err := NewLeaderElector(lec)
if err != nil {
panic(err)
}
// 加载检查leader健康状态的http接口
if lec.WatchDog != nil {
lec.WatchDog.SetLeaderElection(le)
}
// 开始进入选举
le.Run(ctx)
}
==> vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:196
le.Run(ctx)
// Run starts the leader election loop
func (le *LeaderElector) Run(ctx context.Context) {
defer func() {
runtime.HandleCrash()
le.config.Callbacks.OnStoppedLeading()
}()
// 1.acquire是竞选函数,如果选举执行失败直接返回
if !le.acquire(ctx) {
return // ctx signalled done
}
ctx, cancel := context.WithCancel(ctx)
defer cancel()
// 2.竞选成功则另起一个线程,执行上面特别标注的run工作函数,即controller的工作循环
go le.config.Callbacks.OnStartedLeading(ctx)
// 3.刷新leader状态函数
le.renew(ctx)
}
这个函数里包含多个defer和return,这里额外备注一下defer和return的执行先后顺序:
1.多个defer是以栈结构保存的,后入先出,下文的defer先执行
2.return在defer之后执行
3.触发return条件后,return上下文的所有defer中,下文的defer不会被执行
这个函数这里,大概可以看出选举执行的逻辑:
1.选举成功者,开始执行run()函数,即controller的工作函数。同时提供leader状态健康检查的api
2.选举失败者,会结束选举程序。但watchDog会持续运行,监测leader的健康状态
3.选举成功者,在之后会持续刷新自己的leader状态信息
vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:212
// acquire loops calling tryAcquireOrRenew and returns true immediately when tryAcquireOrRenew succeeds.
// Returns false if ctx signals done.
// 选举者开始循环执行申请,若申请leader成功则返回true,若申请leader失败则进入循环状态,每间隔一段时间再申请一次
func (le *LeaderElector) acquire(ctx context.Context) bool {
ctx, cancel := context.WithCancel(ctx)
defer cancel()
succeeded := false
desc := le.config.Lock.Describe()
klog.Infof("attempting to acquire leader lease %v...", desc)
// 进入循环申请leader状态,JitterUntil是一个定时循环功能的函数
wait.JitterUntil(func() {
// 申请或刷新leader函数
succeeded = le.tryAcquireOrRenew()
le.maybeReportTransition()
if !succeeded {
klog.V(4).Infof("failed to acquire lease %v", desc)
return
}
le.config.Lock.RecordEvent("became leader")
le.metrics.leaderOn(le.config.Name)
klog.Infof("successfully acquired lease %v", desc)
// 选举成功后,执行cancel()从定时循环函数中跳出来,返回成功结果
cancel()
}, le.config.RetryPeriod, JitterFactor, true, ctx.Done())
return succeeded
}
来看下定时循环函数JitterUntil的代码:
vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:130
func JitterUntil(f func(), period time.Duration, jitterFactor float64, sliding bool, stopCh <-chan struct{}) {
var t *time.Timer
var sawTimeout bool
for {
select {
case <-stopCh:
return
default:
}
jitteredPeriod := period
if jitterFactor > 0.0 {
jitteredPeriod = Jitter(period, jitterFactor)
}
// sliding代表是否将f()的执行时间计算在间隔之内
// 若执行间隔将f()的执行时间包含在内,则在f()开始之前就启动计时器
if !sliding {
t = resetOrReuseTimer(t, jitteredPeriod, sawTimeout)
}
func() {
defer runtime.HandleCrash()
f()
}()
// 若执行间隔不将f()的执行时间包含在内,则在f()执行完成之后再启动计时器
if sliding {
t = resetOrReuseTimer(t, jitteredPeriod, sawTimeout)
}
// 在这里,select的case没有优先级之分,因此,可能跳过stop判断,所以,在for loop的前面,也加入了一次stop判断,防止重复执行。
select {
case <-stopCh:
return
// 到达
case <-t.C:
sawTimeout = true
}
}
}
// resetOrReuseTimer avoids allocating a new timer if one is already in use.
// Not safe for multiple threads.
func resetOrReuseTimer(t *time.Timer, d time.Duration, sawTimeout bool) *time.Timer {
if t == nil {
return time.NewTimer(d)
}
// timer首次启动时,先将t.C channel内的值都取出来,避免channel消费方hang住
if !t.Stop() && !sawTimeout {
<-t.C
}
// 定时器重置
t.Reset(d)
return t
}
k8s定时任务用的是非常原生的time.timer()来实现的,t.C本质上还是一个channel struct {},消费方运用select来触发到达指定计时间隔后,消费消息,进入下一次循环。
这里关于select结合channel的用法说明进行以下备注:
在select中,代码逻辑执行步骤如下:
1.检查每个case代码块
2.如果存在一个case代码块下有数据产生,执行对应case下的内容
3.如果多个case代码块下有数据产生,随机选取一个case并执行对应内容,无优先级之分
4.如果有default代码块,在没有任何case产生数据时,执行default代码块对应内容
5.如果default之后的代码为空,此时也没有任何case产生数据,则跳出select继续执行下文
6.如果任何一个case代码块都没有数据产生或代码上下文,同时也没有default,则select阻塞等待
关于go time.Timer,这里有一篇文章讲得很好:
https://tonybai.com/2016/12/21/how-to-use-timer-reset-in-golang-correctly/
vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:293
// tryAcquireOrRenew tries to acquire a leader lease if it is not already acquired,
// else it tries to renew the lease if it has already been acquired. Returns true
// on success else returns false.
// 在初次选举、后续间隔刷新状态 这两处地方都会调用这个函数
// 如果参选者不是leader则尝试选举,如果已经是leader,则尝试续约租期,最后刷新信息
func (le *LeaderElector) tryAcquireOrRenew() bool {
now := metav1.Now()
leaderElectionRecord := rl.LeaderElectionRecord{
HolderIdentity: le.config.Lock.Identity(),
LeaseDurationSeconds: int(le.config.LeaseDuration / time.Second),
RenewTime: now,
AcquireTime: now,
}
// 1. obtain or create the ElectionRecord
// 第1步:获取当前的leader的竞选记录,如果当前还没有leader记录,则创建
// 首先获取当前的leader记录
oldLeaderElectionRecord, err := le.config.Lock.Get()
if err != nil {
if !errors.IsNotFound(err) {
klog.Errorf("error retrieving resource lock %v: %v", le.config.Lock.Describe(), err)
return false
}
if err = le.config.Lock.Create(leaderElectionRecord); err != nil {
klog.Errorf("error initially creating leader election record: %v", err)
return false
}
le.observedRecord = leaderElectionRecord
le.observedTime = le.clock.Now()
return true
}
// 第2步,对比观察记录里的leader与当前实际的leader
// 2. Record obtained, check the Identity & Time
if !reflect.DeepEqual(le.observedRecord, *oldLeaderElectionRecord) {
// 如果参选者的上一次观察记录中的leader,不是当前leader,则修改记录,以当前leader为准
le.observedRecord = *oldLeaderElectionRecord
le.observedTime = le.clock.Now()
}
if len(oldLeaderElectionRecord.HolderIdentity) > 0 &&
// 如果参选者不是当前的leader,且当前leader的任期尚未结束,则返回false,参选者选举失败
le.observedTime.Add(le.config.LeaseDuration).After(now.Time) &&
!le.IsLeader() {
klog.V(4).Infof("lock is held by %v and has not yet expired", oldLeaderElectionRecord.HolderIdentity)
return false
}
// 3. We're going to try to update. The leaderElectionRecord is set to it's default
// here. Let's correct it before updating.
if le.IsLeader() {
// 如果参选者就是当前的leader本身,则修改记录里的当选时间变为它此前的当选时间,而不是本次时间,变更次数维持不变
leaderElectionRecord.AcquireTime = oldLeaderElectionRecord.AcquireTime
leaderElectionRecord.LeaderTransitions = oldLeaderElectionRecord.LeaderTransitions
} else {
// 如果参选者不是leader(则说明当前leader在任期已经结束,但并未续约),则当前参选者变更为新的leader
leaderElectionRecord.LeaderTransitions = oldLeaderElectionRecord.LeaderTransitions + 1
}
// update the lock itself
// 更新leader信息,更新leader锁,返回true选举过程顺利完成
if err = le.config.Lock.Update(leaderElectionRecord); err != nil {
klog.Errorf("Failed to update lock: %v", err)
return false
}
le.observedRecord = leaderElectionRecord
le.observedTime = le.clock.Now()
return true
}
这一段代码中有多个leader记录信息相关的变量,很容易混淆,为了便于理解这里抽出来说明下:
LeaderElector # 参选者,每一个controller进程都会参与leader选举
oldLeaderElectionRecord # 本次选举开始前,leader锁中记载的当前leader
leaderElectionRecord # 本次选举的leader记录,最终会更新进入新的leader锁中
observedRecord # 每个参选者都会定期观察当前的leader信息,记录在自身的这个字段中
先来看第1步中是怎么获取当前leader记录的:
vendor/k8s.io/client-go/tools/leaderelection/resourcelock/leaselock.go:39
// Get returns the election record from a Lease spec
func (ll *LeaseLock) Get() (*LeaderElectionRecord, error) {
var err error
// 1.取得lease对象
ll.lease, err = ll.Client.Leases(ll.LeaseMeta.Namespace).Get(ll.LeaseMeta.Name, metav1.GetOptions{})
if err != nil {
return nil, err
}
// 2.将lease.spec转为LeaderElectionRecord记录并返回
return LeaseSpecToLeaderElectionRecord(&ll.lease.Spec), nil
}
取得lease对象的方法在这里:
vendor/k8s.io/client-go/kubernetes/typed/coordination/v1/lease.go:66
func (c *leases) Get(name string, options metav1.GetOptions) (result *v1.Lease, err error) {}
转换并返回的LeaderElectionRecord结构体是这样的:
LeaderElectionRecord{
HolderIdentity: holderIdentity, // leader持有标识
LeaseDurationSeconds: leaseDurationSeconds, // 选举间隔
AcquireTime: metav1.Time{spec.AcquireTime.Time}, // 选举成为leader的时间
RenewTime: metav1.Time{spec.RenewTime.Time}, // 续任时间
LeaderTransitions: leaseTransitions, // leader位置的转接次数
}
对返回的LeaderElectionRecord进行对比,如果是自身,则续约,如果不是自身,则看leader是否过期,对leader lock信息相应处理。
vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:234
func (le *LeaderElector) renew(ctx context.Context) {
ctx, cancel := context.WithCancel(ctx)
defer cancel()
wait.Until(func() {
timeoutCtx, timeoutCancel := context.WithTimeout(ctx, le.config.RenewDeadline)
defer timeoutCancel()
// 间隔刷新leader状态,成功则续约,不成功则释放
err := wait.PollImmediateUntil(le.config.RetryPeriod, func() (bool, error) {
done := make(chan bool, 1)
go func() {
defer close(done)
done <- le.tryAcquireOrRenew()
}()
select {
case <-timeoutCtx.Done():
return false, fmt.Errorf("failed to tryAcquireOrRenew %s", timeoutCtx.Err())
case result := <-done:
return result, nil
}
}, timeoutCtx.Done())
le.maybeReportTransition()
desc := le.config.Lock.Describe()
if err == nil {
klog.V(5).Infof("successfully renewed lease %v", desc)
return
}
le.config.Lock.RecordEvent("stopped leading")
le.metrics.leaderOff(le.config.Name)
klog.Infof("failed to renew lease %v: %v", desc, err)
cancel()
}, le.config.RetryPeriod, ctx.Done())
// if we hold the lease, give it up
if le.config.ReleaseOnCancel {
le.release()
}
}
tryAcquireOrRenew()和循环间隔执行函数同上面所讲基本一致,这里就不再说明了。
组件选举大致可以概括为以下流程:
初始时,各实例均为LeaderElector,最先开始选举的,成为leader,成为工作实例。同时它会维护一份信息(leader lock)供各个LeaderElector探测,包括状态信息、健康监控接口等。
其余LeaderElector,进入热备状态,监控leader的运行状态,异常时会再次参与选举
leader在运行中会间隔持续刷新自身的leader状态。
不止于controller,其余的几个组件,主从之间的工作关系也应当是如此。
感谢阅读,欢迎指正