kernel 3.10代码分析--KVM相关--虚拟机运行


1、基本原理

KVM虚拟机通过字符设备/dev/kvm的ioctl接口创建和运行,相关原理见之前的文章说明。
虚拟机的运行通过/dev/kvm设备ioctl VCPU接口的KVM_RUN指令实现,在VM和VCPU创建好并完成初始化后,就可以调度该虚拟机运行了,通常,一个VCPU对应于一个线程,虚拟机运行的本质为调度该虚拟机相关的VCPU所在线程运行。虚拟机(VCPU)的运行主要任务是要进行上下文切换,上下文主要包括相关寄存器、APIC状态、TLB等,通常上下文切换的过程如下:
1、    保存当前的上下文。
2、    使用kvm_vcpu结构体中的上下文信息,加载到物理CPU中。
3、    执行kvm_x86_ops中的run_vcpu函数,调用硬件相关的指令(如VMLAUNCH),进入虚拟机运行环境中。
虚拟机运行于qemu-kvm的进程上下文中,从硬件的角度看,虚拟机的运行过程,实质为相关指令的执行过程,虚拟机编译后的也就是相应的CPU指令序列,而虚拟机的指令跟Host机的指令执行过程并没有太多的差别,最关键的差别为"敏感指令"(通常为IO、内存等关键操作)的执行,这也是虚拟化实现的本质所在,当在虚拟机中(Guest模式)执行"敏感指令"时,会触发(由硬件触发)VM-exit使当前CPU从Guest模式(non-root模式)切换到root模式,当前CPU的控制权随之转交给VMM(Hypervisor,KVM中即Host),由VMM进行相应的处理,处理完成后再次通过应该硬件指令(如VMLAUNCH),重新进入到Guest模式,从而进入虚拟机运行环境中继续运行。
本文简单解释及分析在3.10版本内核代码中的相关流程,用户态qemu-kvm部分暂不包括。

2、大致流程:
Qemu-kvm可以通过ioctl(KVM_RUN…)使虚拟机运行,最终进入内核态,由KVM相关内核流程处理,在内核态执行的大致过程如下:
kvm_vcpu_ioctl -->
    kvm_arch_vcpu_ioctl_run
具体由内核函数kvm_arch_vcpu_ioctl_run完成相关工作。主要流程如下:

  

1、    Sigprocmask()屏蔽信号,防止在此过程中受到信号的干扰。

2、    设置当前VCPU状态为KVM_MP_STATE_UNINITIALIZED (怎么在VCPU INIT里面(kvm_arch_vcpu_init))

3、    配置APIC和mmio相关信息 (只在kvm_arch_vcpu_init中发现了APIC的创建,没有找到MMIO??)

4、    将VCPU中保存的上下文信息写入指定位置 (没有找到,这里不应该马上切换吧)

5、    然后的工作交由__vcpu_run完成

6、    __vcpu_run最终调用vcpu_enter_guest,该函数实现了进入Guest,并执行Guest OS具体指令的操作。       

7、    vcpu_enter_guest最终调用kvm_x86_ops中的run函数运行。对应于Intel平台,该函数为vmx_vcpu_run(设置Guest CR3和其他寄存器、EPT/影子页表相关设置、汇编代码VMLAUNCH切换到非根模式,执行Guest目标代码)。

8、    Guest代码执行到敏感指令或因其他原因(比如中断/异常),VM-Exit退出非根模式,返回到vcpu_enter_guest函数继续执行。

9、    vcpu_enter_guest函数中会判断VM-Exit原因,并进行相应处理。

10、处理完成后VM-Entry到Guest重新执行Guest代码,或重新等待下次调度。


3、代码分析
kvm_vcpu_ioctl():

 

  1. /*
  2.   * kvm ioctl VCPU指令的入口,传入的fd为KVM_CREATE_VCPU中返回的fd。
  3.   * 主要针对具体的VCPU进行参数设置。如:相关寄存器的读
  4.   * 写、中断控制等
  5.   */
  6. static long kvm_vcpu_ioctl(struct file *filp,
  7.              unsigned int ioctl, unsigned long arg)
  8. {
  9.     struct kvm_vcpu *vcpu = filp->private_data;
  10.     void __user *argp = (void __user *)arg;
  11.     int r;
  12.     struct kvm_fpu *fpu = NULL;
  13.     struct kvm_sregs *kvm_sregs = NULL;
  14.     if (vcpu->kvm->mm != current->mm)
  15.         return -EIO;
  16. #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
  17.     /*
  18.      * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  19.      * so vcpu_load() would break it.
  20.      */
  21.     if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  22.         return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  23. #endif
  24.     // KVM虚拟机VCPU数据结构载入物理CPU
  25.     r = vcpu_load(vcpu);
  26.     if (r)
  27.         return r;
  28.     switch (ioctl) {
  29.     /*
  30.      * 运行虚拟机,最终通过执行VMLAUNCH指令进入non root模式,
  31.      * 进入虚拟机运行。当虚拟机内部执行敏感指令时,由硬
  32.      * 件触发VM-exit,返回到root模式
  33.      */
  34.     case KVM_RUN:
  35.         r = -EINVAL;
  36.         // 不能带参数。
  37.         if (arg)
  38.             goto out;
  39.         // 运行VCPU(即运行虚拟机)的入口函数
  40.         r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  41.         trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  42.         break;
  43. ...


    kvm_vcpu_ioctl()-->kvm_arch_vcpu_ioctl_run()-->__vcpu_run():

     

  44. static int __vcpu_run(struct kvm_vcpu *vcpu)
  45. {
  46.     int r;
  47.     struct kvm *kvm = vcpu->kvm;
  48.     vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  49.     /*设置vcpu->arch.apic->vapic_page*/
  50.     r = vapic_enter(vcpu);
  51.     if (r) {
  52.         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  53.         return r;
  54.     }
  55.     r = 1;
  56.     while (r > 0) {
  57.         /*检查状态*/
  58.         if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  59.          !vcpu->arch.apf.halted)
  60.          /* 进入Guest模式,最终通过VMLAUNCH指令实现*/
  61.             r = vcpu_enter_guest(vcpu);
  62.         else {/*什么情况下会走到这里?*/
  63.             srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  64.             /*阻塞VCPU,其实就是schddule()调度出去,但在有特殊情况时(比如有挂起的定时器或信号时),不进行调度而直接退出*/
  65.             kvm_vcpu_block(vcpu);
  66.             vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  67.             if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
  68.                 kvm_apic_accept_events(vcpu);
  69.                 switch(vcpu->arch.mp_state) {
  70.                 case KVM_MP_STATE_HALTED:
  71.                     vcpu->arch.pv.pv_unhalted = false;
  72.                     vcpu->arch.mp_state =
  73.                         KVM_MP_STATE_RUNNABLE;
  74.                 case KVM_MP_STATE_RUNNABLE:
  75.                     vcpu->arch.apf.halted = false;
  76.                     break;
  77.                 case KVM_MP_STATE_INIT_RECEIVED:
  78.                     break;
  79.                 default:
  80.                     r = -EINTR;
  81.                     break;
  82.                 }
  83.             }
  84.         }
  85.         if (r <= 0)
  86.             break;
  87.         clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  88.         if (kvm_cpu_has_pending_timer(vcpu))
  89.             kvm_inject_pending_timer_irqs(vcpu);
  90.         if (dm_request_for_irq_injection(vcpu)) {
  91.             r = -EINTR;
  92.             vcpu->run->exit_reason = KVM_EXIT_INTR;
  93.             ++vcpu->stat.request_irq_exits;
  94.         }
  95.         kvm_check_async_pf_completion(vcpu);
  96.         if (signal_pending(current)) {
  97.             r = -EINTR;
  98.             vcpu->run->exit_reason = KVM_EXIT_INTR;
  99.             ++vcpu->stat.signal_exits;
  100.         }
  101.         /*这是kvm中的一个调度时机点,即选择新VCPU运行的时机点*/
  102.         if (need_resched()) {
  103.             srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  104.             kvm_resched(vcpu);
  105.             vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  106.         }
  107.     }
  108.     srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  109.     vapic_exit(vcpu);
  110.     return r;
  111. }

    kvm_vcpu_ioctl()-->kvm_arch_vcpu_ioctl_run()-->__vcpu_run()-->vcpu_enter_guest():

     

  112. /* 进入Guest模式,最终通过VMLAUNCH指令实现*/
  113. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  114. {
  115.     int r;
  116.     bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  117.         vcpu->run->request_interrupt_window;
  118.     bool req_immediate_exit = false;
  119.     /*进入Guest模式前先处理相关挂起的请求*/
  120.     if (vcpu->requests) {
  121.         /*卸载MMU*/
  122.         if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  123.             kvm_mmu_unload(vcpu);
  124.         /*定时器迁移*/
  125.         if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  126.             __kvm_migrate_timers(vcpu);
  127.         /*主时钟更新*/
  128.         if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
  129.             kvm_gen_update_masterclock(vcpu->kvm);
  130.         /*全局时钟更新*/
  131.         if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
  132.             kvm_gen_kvmclock_update(vcpu);
  133.         /*虚拟机时钟更新*/
  134.         if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  135.             r = kvm_guest_time_update(vcpu);
  136.             if (unlikely(r))
  137.                 goto out;
  138.         }
  139.         /*更新mmu*/
  140.         if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  141.             kvm_mmu_sync_roots(vcpu);
  142.         /*刷新TLB*/
  143.         if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  144.             kvm_x86_ops->tlb_flush(vcpu);
  145.         if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  146.             vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  147.             r = 0;
  148.             goto out;
  149.         }
  150.         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  151.             vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  152.             r = 0;
  153.             goto out;
  154.         }
  155.         if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  156.             vcpu->fpu_active = 0;
  157.             kvm_x86_ops->fpu_deactivate(vcpu);
  158.         }
  159.         if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
  160.             /* Page is swapped out. Do synthetic halt */
  161.             vcpu->arch.apf.halted = true;
  162.             r = 1;
  163.             goto out;
  164.         }
  165.         if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
  166.             record_steal_time(vcpu);
  167.         if (kvm_check_request(KVM_REQ_NMI, vcpu))
  168.             process_nmi(vcpu);
  169.         if (kvm_check_request(KVM_REQ_PMU, vcpu))
  170.             kvm_handle_pmu_event(vcpu);
  171.         if (kvm_check_request(KVM_REQ_PMI, vcpu))
  172.             kvm_deliver_pmi(vcpu);
  173.         if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
  174.             vcpu_scan_ioapic(vcpu);
  175.     }
  176.     // 检查是否有事件请求
  177.     if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  178.         kvm_apic_accept_events(vcpu);
  179.         if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
  180.             r = 1;
  181.             goto out;
  182.         }
  183.         // 注入阻塞的事件,中断,异常和nmi等
  184.         inject_pending_event(vcpu);
  185.         /* enable NMI/IRQ window open exits if needed */
  186.         /*
  187.          * 使能NMI/IRQ window,参见Intel64 System Programming Guide 25.3节(P366)
  188.          * 当使能了interrupt-window exiting或NMI-window exiting(由VMCS中相关字段控制)
  189.          * 表示在刚进入虚拟机后,就会立刻因为有pending或注入的中断导致VM-exit
  190.          */
  191.         if (vcpu->arch.nmi_pending)
  192.             req_immediate_exit =
  193.                 kvm_x86_ops->enable_nmi_window(vcpu) != 0;
  194.         else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
  195.             req_immediate_exit =
  196.                 kvm_x86_ops->enable_irq_window(vcpu) != 0;
  197.         if (kvm_lapic_enabled(vcpu)) {
  198.             /*
  199.              * Update architecture specific hints for APIC
  200.              * virtual interrupt delivery.
  201.              */
  202.             if (kvm_x86_ops->hwapic_irr_update)
  203.                 kvm_x86_ops->hwapic_irr_update(vcpu,
  204.                     kvm_lapic_find_highest_irr(vcpu));
  205.             update_cr8_intercept(vcpu);
  206.             kvm_lapic_sync_to_vapic(vcpu);
  207.         }
  208.     }
  209.     // 装载MMU,待深入分析
  210.     r = kvm_mmu_reload(vcpu);
  211.     if (unlikely(r)) {
  212.         goto cancel_injection;
  213.     }
  214.     preempt_disable();
  215.     // 进入Guest前期准备,架构相关
  216.     kvm_x86_ops->prepare_guest_switch(vcpu);
  217.     if (vcpu->fpu_active)
  218.         kvm_load_guest_fpu(vcpu);
  219.     kvm_load_guest_xcr0(vcpu);
  220.     vcpu->mode = IN_GUEST_MODE;
  221.     /* We should set ->mode before check ->requests,
  222.      * see the comment in make_all_cpus_request.
  223.      */
  224.     smp_mb();
  225.     local_irq_disable();
  226.     /*
  227.      * 如果VCPU处于EXITING_GUEST_MODE或者vcpu->requests(?)或者需要调度或者
  228.      * 有挂起的信号,则放弃
  229.      */
  230.     if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
  231.      || need_resched() || signal_pending(current)) {
  232.         vcpu->mode = OUTSIDE_GUEST_MODE;
  233.         smp_wmb();
  234.         local_irq_enable();
  235.         preempt_enable();
  236.         r = 1;
  237.         goto cancel_injection;
  238.     }
  239.     srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  240.     // req_immediate_exit在前面使能NMI/IRQ window失败时设置,此时需要立即退出,触发重新调度
  241.     if (req_immediate_exit)
  242.         smp_send_reschedule(vcpu->cpu);
  243.     // 计算虚拟机的enter时间
  244.     kvm_guest_enter();
  245.     // 调试相关
  246.     if (unlikely(vcpu->arch.switch_db_regs)) {
  247.         set_debugreg(0, 7);
  248.         set_debugreg(vcpu->arch.eff_db[0], 0);
  249.         set_debugreg(vcpu->arch.eff_db[1], 1);
  250.         set_debugreg(vcpu->arch.eff_db[2], 2);
  251.         set_debugreg(vcpu->arch.eff_db[3], 3);
  252.     }
  253.     trace_kvm_entry(vcpu->vcpu_id);
  254.     // 调用架构相关的run接口(vmx_vcpu_run),进入Guest模式
  255.     kvm_x86_ops->run(vcpu);
  256.     
  257.     // 此处开始,说明已经发生了VM-exit,退出了Guest模式
  258.     /*
  259.      * If the guest has used debug registers, at least dr7
  260.      * will be disabled while returning to the host.
  261.      * If we don't have active breakpoints in the host, we don't
  262.      * care about the messed up debug address registers. But if
  263.      * we have some of them active, restore the old state.
  264.      */
  265.     if (hw_breakpoint_active())
  266.         hw_breakpoint_restore();
  267.     /*记录Guest退出前的TSC时钟*/
  268.     vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
  269.                              native_read_tsc());
  270.     // 设置模式
  271.     vcpu->mode = OUTSIDE_GUEST_MODE;
  272.     smp_wmb();
  273.     /* Interrupt is enabled by handle_external_intr() */
  274.     kvm_x86_ops->handle_external_intr(vcpu);
  275.     ++vcpu->stat.exits;
  276.     /*
  277.      * We must have an instruction between local_irq_enable() and
  278.      * kvm_guest_exit(), so the timer interrupt isn't delayed by
  279.      * the interrupt shadow. The stat.exits increment will do nicely.
  280.      * But we need to prevent reordering, hence this barrier():
  281.      */
  282.     barrier();
  283.     // 计算虚拟机的退出时间,其中还开中断了?
  284.     kvm_guest_exit();
  285.     
  286.     preempt_enable();
  287.     vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  288.     /*
  289.      * Profile KVM exit RIPs:
  290.      */
  291.     // Profile(采样计数,用于性能分析和调优)相关
  292.     if (unlikely(prof_on == KVM_PROFILING)) {
  293.         unsigned long rip = kvm_rip_read(vcpu);
  294.         profile_hit(KVM_PROFILING, (void *)rip);
  295.     }
  296.     if (unlikely(vcpu->arch.tsc_always_catchup))
  297.         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  298.     if (vcpu->arch.apic_attention)
  299.         kvm_lapic_sync_from_vapic(vcpu);
  300.     /*
  301.      * 调用vmx_handle_exit()处理虚拟机异常,异常原因及其它关键信息
  302.      * 已经在之前获取。
  303.      */
  304.     r = kvm_x86_ops->handle_exit(vcpu);
  305.     return r;
  306. cancel_injection:
  307.     kvm_x86_ops->cancel_injection(vcpu);
  308.     if (unlikely(vcpu->arch.apic_attention))
  309.         kvm_lapic_sync_from_vapic(vcpu);
  310. out:
  311.     return r;
  312. }


    kvm_vcpu_ioctl()-->kvm_arch_vcpu_ioctl_run()-->__vcpu_run()-->vcpu_enter_guest()-->vmx_vcpu_run():

     

  313. /*
  314.   * 运行虚拟机,进入Guest模式,即non root模式
  315.   */
  316. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  317. {
  318.     struct vcpu_vmx *vmx = to_vmx(vcpu);
  319.     unsigned long debugctlmsr;
  320.     /* Record the guest's net vcpu time for enforced NMI injections. */
  321.     // nmi注入?跟nmi_watchdog相关?
  322.     if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  323.         vmx->entry_time = ktime_get();
  324.     /* Don't enter VMX if guest state is invalid, let the exit handler
  325.      start emulation until we arrive back to a valid state */
  326.     if (vmx->emulation_required)
  327.         return;
  328.     if (vmx->nested.sync_shadow_vmcs) {
  329.         copy_vmcs12_to_shadow(vmx);
  330.         vmx->nested.sync_shadow_vmcs = false;
  331.     }
  332.     // 写入Guest的RSP寄存器信息至VMCS相关位置中
  333.     if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  334.         vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  335.     // 写入Guest的RIP寄存器信息至VMCS相关位置中
  336.     if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  337.         vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  338.     /* When single-stepping over STI and MOV SS, we must clear the
  339.      * corresponding interruptibility bits in the guest state. Otherwise
  340.      * vmentry fails as it then expects bit 14 (BS) in pending debug
  341.      * exceptions being set, but that's not correct for the guest debugging
  342.      * case. */
  343.     // 单步调试时,需要禁用Guest中断
  344.     if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  345.         vmx_set_interrupt_shadow(vcpu, 0);
  346.     atomic_switch_perf_msrs(vmx);
  347.     debugctlmsr = get_debugctlmsr();
  348.     // vmx->__launched用于判断当前VCPU是否已经VMLAUNCH了
  349.     vmx->__launched = vmx->loaded_vmcs->launched;
  350.     // 执行VMLAUNCH指令进入Guest模式,虚拟机开始运行
  351.     asm(
  352.         /* Store host registers */
  353.         /*将相关寄存器压栈*/
  354.         "push %%" _ASM_DX "; push %%" _ASM_BP ";"/*BP压栈*/
  355.         /*为guest的rcx寄存器保留个位置,所以这里压两次栈*/
  356.         "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
  357.         "push %%" _ASM_CX " \n\t"
  358.         /*
  359.          * %c表示用来表示使用立即数替换,但不使用立即数的语法,at&t汇编中表示立即数的语法前面有一个$,而用了%c后,就去掉了这个$。
  360.          * 主要是用在间接寻址的情况,这种情况下如果直接使用$立即数的方式的话,会报语法错误。
  361.          * [host_rsp]是后面输入部分定义的tag,使用%tag方式可以直接引用,%0是后面输入输出部分中的第一个操作数,即vmx,这里是间接寻址
  362.          * %c[host_rsp](%0)整体来看就是vmx(以寄存器ecx传入)中的host_rsp成员。
  363.          * 所以,如下语句的整体含义就是比较当前SP寄存器和vmx->host_rsp的值。
  364.          */
  365.         /*如果当前RSP和vmx->rsp相等,那就不用mov了,否则将当前RSP保存到vmx中*/
  366.         "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  367.         "je 1f \n\t"
  368.         "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  369.         /*执行ASM_VMX_VMWRITE_RSP_RDX指令,当出现异常时直接重启,由__ex()实现*/
  370.         __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  371.         "1: \n\t"
  372.         /* Reload cr2 if changed */
  373.         /*比较当前CR2寄存器和vmx中保存的CR2寄存器内容,如果不相等,就从vmx中重新CR2内容到当前CR2寄存器中*/
  374.         "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
  375.         "mov %%cr2, %%" _ASM_DX " \n\t"
  376.         "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
  377.         "je 2f \n\t"
  378.         "mov %%" _ASM_AX", %%cr2 \n\t"
  379.         "2: \n\t"
  380.         /* Check if vmlaunch of vmresume is needed */
  381.         /*判断vcpu_vmx->__launched,确认是否需要执行VMLAUNCH*/
  382.         "cmpl $0, %c[launched](%0) \n\t"
  383.         /* Load guest registers. Don't clobber flags. */
  384.         /*加载guest寄存器,其实就是从vmx中加载*/
  385.         "mov %c[rax](%0), %%" _ASM_AX " \n\t"
  386.         "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
  387.         "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
  388.         "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
  389.         "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
  390.         "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
  391. #ifdef CONFIG_X86_64
  392.         "mov %c[r8](%0), %%r8 \n\t"
  393.         "mov %c[r9](%0), %%r9 \n\t"
  394.         "mov %c[r10](%0), %%r10 \n\t"
  395.         "mov %c[r11](%0), %%r11 \n\t"
  396.         "mov %c[r12](%0), %%r12 \n\t"
  397.         "mov %c[r13](%0), %%r13 \n\t"
  398.         "mov %c[r14](%0), %%r14 \n\t"
  399.         "mov %c[r15](%0), %%r15 \n\t"
  400. #endif
  401.         "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
  402.         /* Enter guest mode */
  403.         "jne 1f \n\t"
  404.         /* 执行VMLAUNCH指令,进入Guest模式*/
  405.         __ex(ASM_VMX_VMLAUNCH) "\n\t"
  406.         "jmp 2f \n\t"
  407.         /* 如果已经曾经加载过VM了,执行VMRESUME指令,快速重新启动VM*/
  408.         "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
  409.         "2: "
  410.         /* Save guest registers, load host registers, keep flags */
  411.         "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
  412.         "pop %0 \n\t"
  413.         "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
  414.         "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
  415.         __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
  416.         "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
  417.         "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
  418.         "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
  419.         "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
  420. #ifdef CONFIG_X86_64
  421.         "mov %%r8, %c[r8](%0) \n\t"
  422.         "mov %%r9, %c[r9](%0) \n\t"
  423.         "mov %%r10, %c[r10](%0) \n\t"
  424.         "mov %%r11, %c[r11](%0) \n\t"
  425.         "mov %%r12, %c[r12](%0) \n\t"
  426.         "mov %%r13, %c[r13](%0) \n\t"
  427.         "mov %%r14, %c[r14](%0) \n\t"
  428.         "mov %%r15, %c[r15](%0) \n\t"
  429. #endif
  430.         "mov %%cr2, %%" _ASM_AX " \n\t"
  431.         "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
  432.         "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
  433.         "setbe %c[fail](%0) \n\t"
  434.         ".pushsection .rodata \n\t"
  435.         ".global vmx_return \n\t"
  436.         "vmx_return: " _ASM_PTR " 2b \n\t"
  437.         ".popsection"
  438.      : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  439.         [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  440.         [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  441.         /*[host_rsp]是tag,可以在前面以%[host_rsp]方式引用*/
  442.         [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  443.         [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  444.         [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  445.         [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  446.         [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  447.         [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  448.         [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  449.         [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  450. #ifdef CONFIG_X86_64
  451.         [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  452.         [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  453.         [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  454.         [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  455.         [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  456.         [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  457.         [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  458.         [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  459. #endif
  460.         [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  461.         [wordsize]"i"(sizeof(ulong))
  462.      : "cc", "memory"/*clobber list,cc表示寄存器,memory表示内存*/
  463. #ifdef CONFIG_X86_64
  464.         , "rax", "rbx", "rdi", "rsi"
  465.         , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  466. #else
  467.         , "eax", "ebx", "edi", "esi"
  468. #endif
  469.      );
  470.     // 运行到这里,说明已经发生了VM-exit,返回到了root模式
  471.     /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
  472.     if (debugctlmsr)
  473.         update_debugctlmsr(debugctlmsr);
  474. #ifndef CONFIG_X86_64
  475.     /*
  476.      * The sysexit path does not restore ds/es, so we must set them to
  477.      * a reasonable value ourselves.
  478.      *
  479.      * We can't defer this to vmx_load_host_state() since that function
  480.      * may be executed in interrupt context, which saves and restore segments
  481.      * around it, nullifying its effect.
  482.      */
  483.     /*重新加载ds/es段寄存器,因为VM-exit不会自动加载他们*/
  484.     loadsegment(ds, __USER_DS);
  485.     loadsegment(es, __USER_DS);
  486. #endif
  487.     vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  488.                  | (1 << VCPU_EXREG_RFLAGS)
  489.                  | (1 << VCPU_EXREG_CPL)
  490.                  | (1 << VCPU_EXREG_PDPTR)
  491.                  | (1 << VCPU_EXREG_SEGMENTS)
  492.                  | (1 << VCPU_EXREG_CR3));
  493.     vcpu->arch.regs_dirty = 0;
  494.     // 从硬件VMCS中读取中断向量表信息
  495.     vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  496.     vmx->loaded_vmcs->launched = 1;
  497.     // 从硬件VMCS中读取VM-exit原因信息,这些信息是VM-exit过程中由硬件自动写入的
  498.     vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  499.     trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  500.     /*处理MCE异常和NMI中断*/
  501.     vmx_complete_atomic_exit(vmx);
  502.     vmx_recover_nmi_blocking(vmx);
  503.     vmx_complete_interrupts(vmx);
  504. }

     

     

你可能感兴趣的:(虚拟化)