文章转载自:
http://wentaoma.com/2016/08/10/caffe-python-common-api-reference/
加载Model数据
net = caffe.Net(
deploy_prototxt_path, # 用于分类的网络定义文件路径
caffe_model_path, # 训练好模型路径
caffe.TEST # 设置为测试阶段
)
中值文件转换
# 编写一个函数,将二进制的均值转换为python的均值
def convert_mean(binMean,npyMean):
blob = caffe.proto.caffe_pb2.BlobProto()
bin_mean = open(binMean, 'rb' ).read()
blob.ParseFromString(bin_mean)
arr = np.array( caffe.io.blobproto_to_array(blob) )
npy_mean = arr[0]
np.save(npyMean, npy_mean )
# 调用函数转换均值
binMean='examples/cifar10/mean.binaryproto'
npyMean='examples/cifar10/mean.npy'
convert_mean(binMean,npyMean)
图片预处理
# 设定图片的shape格式为网络data层格式
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
# 改变维度的顺序,由原始图片维度(width, height, channel)变为(channel, width, height)
transformer.set_transpose('data', (2,0,1))
# 减去均值,注意要先将binaryproto格式均值文件转换为npy格式[此步根据训练model时设置可选]
transformer.set_mean('data', np.load(mean_file_path).mean(1).mean(1))
# 缩放到[0,255]之间
transformer.set_raw_scale('data', 255)
# 交换通道,将图片由RGB变为BGR
transformer.set_channel_swap('data', (2,1,0))
# 加载图片
im=caffe.io.load_image(img)
# 执行上面设置的图片预处理操作,并将图片载入到blob中
net.blobs['data'].data[...] = transformer.preprocess('data',im)
执行测试
#执行测试
out = net.forward()
labels = np.loadtxt(labels_filename, str, delimiter='\t') #读取类别名称文件
prob= net.blobs['Softmax1'].data[0].flatten() #取出最后一层(Softmax)属于某个类别的概率值,并打印
print prob
order=prob.argsort()[0] #将概率值排序,取出最大值所在的序号
print 'the class is:',labels[order] #将该序号转换成对应的类别名称,并打印
# 取出前五个较大值所在的序号
top_inds = prob.argsort()[::-1][:5]
print 'probabilities and labels:' zip(prob[top_inds], labels[top_inds])
各层信息显示
# params显示:layer名,w,b
for layer_name, param in net.params.items():
print layer_name + '\t' + str(param[0].data.shape), str(param[1].data.shape)
# blob显示:layer名,输出的blob维度
for layer_name, blob in net.blobs.items():
print layer_name + '\t' + str(blob.data.shape)
自定义函数:参数/卷积结果可视化
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import caffe
%matplotlib inline
plt.rcParams['figure.figsize'] = (8, 8)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
def show_data(data, padsize=1, padval=0):
"""Take an array of shape (n, height, width) or (n, height, width, 3)
and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)"""
# data归一化
data -= data.min()
data /= data.max()
# 根据data中图片数量data.shape[0],计算最后输出时每行每列图片数n
n = int(np.ceil(np.sqrt(data.shape[0])))
# padding = ((图片个数维度的padding),(图片高的padding), (图片宽的padding), ....)
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
# 先将padding后的data分成n*n张图像
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
# 再将(n, W, n, H)变换成(n*w, n*H)
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
plt.figure()
plt.imshow(data,cmap='gray')
plt.axis('off')
# 示例:显示第一个卷积层的输出数据和权值(filter)
print net.blobs['conv1'].data[0].shape
show_data(net.blobs['conv1'].data[0])
print net.params['conv1'][0].data.shape
show_data(net.params['conv1'][0].data.reshape(32*3,5,5))
自定义:训练过程Loss&Accuracy可视化
import matplotlib.pyplot as plt
import caffe
caffe.set_device(0)
caffe.set_mode_gpu()
# 使用SGDSolver,即随机梯度下降算法
solver = caffe.SGDSolver('/home/xxx/mnist/solver.prototxt')
# 等价于solver文件中的max_iter,即最大解算次数
niter = 10000
# 每隔100次收集一次loss数据
display= 100
# 每次测试进行100次解算
test_iter = 100
# 每500次训练进行一次测试
test_interval =500
#初始化
train_loss = zeros(ceil(niter * 1.0 / display))
test_loss = zeros(ceil(niter * 1.0 / test_interval))
test_acc = zeros(ceil(niter * 1.0 / test_interval))
# 辅助变量
_train_loss = 0; _test_loss = 0; _accuracy = 0
# 进行解算
for it in range(niter):
# 进行一次解算
solver.step(1)
# 统计train loss
_train_loss += solver.net.blobs['SoftmaxWithLoss1'].data
if it % display == 0:
# 计算平均train loss
train_loss[it // display] = _train_loss / display
_train_loss = 0
if it % test_interval == 0:
for test_it in range(test_iter):
# 进行一次测试
solver.test_nets[0].forward()
# 计算test loss
_test_loss += solver.test_nets[0].blobs['SoftmaxWithLoss1'].data
# 计算test accuracy
_accuracy += solver.test_nets[0].blobs['Accuracy1'].data
# 计算平均test loss
test_loss[it / test_interval] = _test_loss / test_iter
# 计算平均test accuracy
test_acc[it / test_interval] = _accuracy / test_iter
_test_loss = 0
_accuracy = 0
# 绘制train loss、test loss和accuracy曲线
print '\nplot the train loss and test accuracy\n'
_, ax1 = plt.subplots()
ax2 = ax1.twinx()
# train loss -> 绿色
ax1.plot(display * arange(len(train_loss)), train_loss, 'g')
# test loss -> 黄色
ax1.plot(test_interval * arange(len(test_loss)), test_loss, 'y')
# test accuracy -> 红色
ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r')
ax1.set_xlabel('iteration')
ax1.set_ylabel('loss')
ax2.set_ylabel('accuracy')
plt.show()