jvm虚拟机

@(settle_ JavaEE)[#jvm]

jvm虚拟机

如何判断一个对象是死还是生?

1. 可达性算法

可达性算法判断对象是否可以被回收,主要是看一个对象到 GC root 是否有引用链,也是这个到 GC Root是否可达的,
如果是不可达的,则会被认为是可以回收


垃圾收集器参数总结

收集器设置:
-XX:+UseSerialGC:年轻串行(Serial),老年串行(Serial Old)
-XX:+UseParNewGC:年轻并行(ParNew),老年串行(Serial Old)
-XX:+UseConcMarkSweepGC:年轻并行(ParNew),老年串行(CMS),备份(Serial Old)
-XX:+UseParallelGC:年轻并行吞吐(Parallel Scavenge),老年串行(Serial Old)
-XX:+UseParalledlOldGC:年轻并行吞吐(Parallel Scavenge),老年并行吞吐(Parallel Old)
收集器参数:
-XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。
-XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间
-XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
-XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。
-XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。

JVM参数列表

java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxPermSize=16m  -XX:MaxTenuringThreshold=0

-Xmx3550m:最大堆内存为3550M。
-Xms3550m:初始堆内存为3550m。

此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。

-Xmn2g:设置年轻代大小为2G。

整个堆大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
-Xss128k:设置每个线程的堆栈大小。
JDK5.0以后每个线程堆栈大小为1M,在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在 3000~5000左右。 

-XX:NewRatio=4:设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5

-XX:SurvivorRatio=4:设置年轻代中Eden区与Survivor区的大小比值。
设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6

-XX:MaxPermSize=16m:设置持久代大小为16m。

-XX:MaxTenuringThreshold=15:设置垃圾最大年龄。

如果设置为0的话,则年轻代对象不经过Survivor区,直 接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象 再年轻代的存活时间,增加在年轻代即被回收的概论。

输出gc日志

-XX:+PrintGC 输出GC日志
-XX:+PrintGCDetails 输出GC的详细日志
-XX:+PrintGCTimeStamps 输出GC的时间戳(以基准时间的形式)
-XX:+PrintGCDateStamps 输出GC的时间戳(以日期的形式,如 2013-05-04T21:53:59.234+0800)
-XX:+PrintHeapAtGC 在进行GC的前后打印出堆的信息
-Xloggc:../logs/gc.log 日志文件的输出路径

输出gc日志

-XX:+PrintGC 输出GC日志
-XX:+PrintGCDetails 输出GC的详细日志
-XX:+PrintGCTimeStamps 输出GC的时间戳(以基准时间的形式)
-XX:+PrintGCDateStamps 输出GC的时间戳(以日期的形式,如 2013-05-04T21:53:59.234+0800)
-XX:+PrintHeapAtGC 在进行GC的前后打印出堆的信息
-Xloggc:../logs/gc.log 日志文件的输出路径

gc日志解释

Minor GC


2016-08-23T02:23:07.219-0200 – GC发生的时间;

64.322 – GC开始,相对JVM启动的相对时间,单位是秒;

GC – 区别MinorGC和FullGC的标识,这次代表的是MinorGC;

Allocation Failure – MinorGC的原因,在这个case里边,由于年轻代不满足申请的空间,因此触发了MinorGC;

ParNew – 收集器的名称,它预示了年轻代使用一个并行的 mark-copy 
stop-the-world 垃圾收集器;

613404K->68068K – 收集前后年轻代的使用情况;

(613440K) – 整个年轻代的容量;

0.1020465 secs – 这个解释用原滋原味的解释:Duration for the collection w/o final cleanup.

10885349K->10880154K – 收集前后整个堆的使用情况;

(12514816K) – 整个堆的容量;

0.1021309 secs – ParNew收集器标记和复制年轻代活着的对象所花费的时间(包括和老年代通信的开销、对象晋升到老年代时间、垃圾收集周期结束一些最后的清理对象等的花销);

[Times: user=0.78 sys=0.01, real=0.11 secs] – GC事件在不同维度的耗时,具体的用英文解释起来更加合理:

user – Total CPU time that was consumed by Garbage Collector threads during this collection
sys – Time spent in OS calls or waiting for system event
real – Clock time for which your application was stopped. With Parallel GC this number should be close to (user time + system time) divided by the number of threads used by the Garbage Collector. In this particular case 8 threads were used. Note that due to some activities not being parallelizable, it always exceeds the ratio by a certain amount.
我们来分析下对象晋升问题(原文中的计算方式有问题):
开始的时候:整个堆的大小是 10885349K,年轻代大小是613404K,这说明老年代大小是 10885349-613404=10271945K,

收集完成之后:整个堆的大小是 10880154K,年轻代大小是68068K,这说明老年代大小是 10880154-68068=10812086K,

老年代的大小增加了:10812086-10271945=608209K,也就是说 年轻代到年老代promot了608209K的数据;

老年代的大小增加了:10812086-10271945=608209K,也就是说 年轻代到年老代promot了608209K的数据;

你可能感兴趣的:(jvm虚拟机)