MapReduce实战之辅助排序和二次排序案例

辅助排序和二次排序案例

1)需求

有如下订单数据

订单id

商品id

成交金额

0000001

Pdt_01

222.8

0000001

Pdt_06

25.8

0000002

Pdt_03

522.8

0000002

Pdt_04

122.4

0000002

Pdt_05

722.4

0000003

Pdt_01

222.8

0000003

Pdt_02

33.8

现在需要求出每一个订单中最贵的商品。

2)输入数据

0000001    Pdt_01    222.8
0000002    Pdt_06    722.4
0000001    Pdt_05    25.8
0000003    Pdt_01    222.8
0000003    Pdt_01    33.8
0000002    Pdt_03    522.8
0000002    Pdt_04    122.4

输出数据预期:

0:3    222.8

1:2    722.4

2:1    222.8

3)分析

(1)利用“订单id和成交金额”作为key,可以将map阶段读取到的所有订单数据按照id分区,按照金额排序,发送到reduce。

(2)在reduce端利用groupingcomparator将订单id相同的kv聚合成组,然后取第一个即是最大值。

MapReduce实战之辅助排序和二次排序案例_第1张图片

4)代码实现

(1)定义订单信息OrderBean

package com.atguigu.mapreduce.order;

import java.io.DataInput;

import java.io.DataOutput;

import java.io.IOException;

import org.apache.hadoop.io.WritableComparable;

 

public class OrderBean implements WritableComparable {

 

       private int order_id; // 订单id号

       private double price; // 价格

 

       public OrderBean() {

              super();

       }

 

       public OrderBean(int order_id, double price) {

              super();

              this.order_id = order_id;

              this.price = price;

       }

 

       @Override

       public void write(DataOutput out) throws IOException {

              out.writeInt(order_id);

              out.writeDouble(price);

       }

 

       @Override

       public void readFields(DataInput in) throws IOException {

              order_id = in.readInt();

              price = in.readDouble();

       }

 

       @Override

       public String toString() {

              return order_id + "\t" + price;

       }

 

       public int getOrder_id() {

              return order_id;

       }

 

       public void setOrder_id(int order_id) {

              this.order_id = order_id;

       }

 

       public double getPrice() {

              return price;

       }

 

       public void setPrice(double price) {

              this.price = price;

       }

 

       // 二次排序

       @Override

       public int compareTo(OrderBean o) {

 

              int result;

 

              if (order_id > o.getOrder_id()) {

                     result = 1;

              } else if (order_id < o.getOrder_id()) {

                     result = -1;

              } else {

                     // 价格倒序排序

                     result = price > o.getPrice() ? -1 : 1;

              }

 

              return result;

       }

}

(2)编写OrderSortMapper

package com.atguigu.mapreduce.order;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

 

public class OrderMapper extends Mapper {

       OrderBean k = new OrderBean();

      

       @Override

       protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

             

              // 1 获取一行

              String line = value.toString();

             

              // 2 截取

              String[] fields = line.split("\t");

             

              // 3 封装对象

              k.setOrder_id(Integer.parseInt(fields[0]));

              k.setPrice(Double.parseDouble(fields[2]));

             

              // 4 写出

              context.write(k, NullWritable.get());

       }

}

(3)编写OrderSortPartitioner

package com.atguigu.mapreduce.order;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.mapreduce.Partitioner;

 

public class OrderPartitioner extends Partitioner {

 

       @Override

       public int getPartition(OrderBean key, NullWritable value, int numReduceTasks) {

             

              return (key.getOrder_id() & Integer.MAX_VALUE) % numReduceTasks;

       }

}

(4)编写OrderSortGroupingComparator

package com.atguigu.mapreduce.order;

import org.apache.hadoop.io.WritableComparable;

import org.apache.hadoop.io.WritableComparator;

 

public class OrderGroupingComparator extends WritableComparator {

 

       protected OrderGroupingComparator() {

              super(OrderBean.class, true);

       }

 

       @SuppressWarnings("rawtypes")

       @Override

       public int compare(WritableComparable a, WritableComparable b) {

 

              OrderBean aBean = (OrderBean) a;

              OrderBean bBean = (OrderBean) b;

 

              int result;

              if (aBean.getOrder_id() > bBean.getOrder_id()) {

                     result = 1;

              } else if (aBean.getOrder_id() < bBean.getOrder_id()) {

                     result = -1;

              } else {

                     result = 0;

              }

 

              return result;

       }

}

(5)编写OrderSortReducer

package com.atguigu.mapreduce.order;

import java.io.IOException;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.mapreduce.Reducer;

 

public class OrderReducer extends Reducer {

 

       @Override

       protected void reduce(OrderBean key, Iterable values, Context context)

                     throws IOException, InterruptedException {

             

              context.write(key, NullWritable.get());

       }

}

(6)编写OrderSortDriver

package com.atguigu.mapreduce.order;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

 

public class OrderDriver {

 

       public static void main(String[] args) throws Exception, IOException {

 

              // 1 获取配置信息

              Configuration conf = new Configuration();

              Job job = Job.getInstance(conf);

 

              // 2 设置jar包加载路径

              job.setJarByClass(OrderDriver.class);

 

              // 3 加载map/reduce类

              job.setMapperClass(OrderMapper.class);

              job.setReducerClass(OrderReducer.class);

 

              // 4 设置map输出数据key和value类型

              job.setMapOutputKeyClass(OrderBean.class);

              job.setMapOutputValueClass(NullWritable.class);

 

              // 5 设置最终输出数据的key和value类型

              job.setOutputKeyClass(OrderBean.class);

              job.setOutputValueClass(NullWritable.class);

 

              // 6 设置输入数据和输出数据路径

              FileInputFormat.setInputPaths(job, new Path(args[0]));

              FileOutputFormat.setOutputPath(job, new Path(args[1]));

 

              // 10 设置reduce端的分组

              job.setGroupingComparatorClass(OrderGroupingComparator.class);

 

              // 7 设置分区

              job.setPartitionerClass(OrderPartitioner.class);

 

              // 8 设置reduce个数

              job.setNumReduceTasks(3);

 

              // 9 提交

              boolean result = job.waitForCompletion(true);

              System.exit(result ? 0 : 1);

       }

}

你可能感兴趣的:(Hadoop)