由于js安全不允许读写本地文件,采用引用脚本方式读取json
equation.js
var edata = [
{
"eid": "1",
"etype": "RATH",
"ename": "RATH",
"equation": [
"diff(u(x,t),t)+u(x,t)*diff(u(x,t),x)+p*diff(u(x,t),x$3)=0",
"diff(u(x,t),t)+u(x,t)*diff(u(x,t),x)-p*diff(u(x,t),x$2)+q*diff(u(x,t),x$3)=0",
"diff(u(x,t),t)+alpha*diff(u(x,t),t)*diff(u(x,t),x$2)+beta*u(x,t)*diff(u(x,t),x$3)=0",
"diff(u(x,t),t)+u(x,t)*diff(u(x,t),x$3)+p*diff(u(x,t),x)*diff(u(x,t),x$2)+q*u(x,t)^2*diff(u(x,t),x)+diff(u(x,t),x$5)=0"
],
"desc": "Real Automated TanH-function method"
},
{
"eid": "2",
"etype": "IRATH",
"ename": "IRATH",
"equation": [
"diff(u(x,t),t)+u(x,t)*diff(u(x,t),x)+p*diff(u(x,t),x$3)=0",
"diff(u(x,t),t)+u(x,t)*diff(u(x,t),x)-p*diff(u(x,t),x$2)+q*diff(u(x,t),x$3)=0",
"diff(u(x,t),t)+alpha*diff(u(x,t),t)*diff(u(x,t),x$2)+beta*u(x,t)*diff(u(x,t),x$3)=0",
"diff(u(x,t),t)+u(x,t)*diff(u(x,t),x$3)+p*diff(u(x,t),x)*diff(u(x,t),x$2)+q*u(x,t)^2*diff(u(x,t),x)+diff(u(x,t),x$5)=0"
],
"desc": "Improved Real Automated TanH-function method"
},
{
"eid": "3",
"etype": "RAEEM",
"ename": "RAEEM",
"equation": [
"[diff(u(x,y,z,t),t)+u(x,y,z,t)^2*diff(u(x,y,z,t),x)+diff(u(x,y,z,t),x$3)+diff(u(x,y,z,t),x,y,y)+diff(u(x,y,z,t),x,z,z)=0],3,3",
"[diff(u(x,t),t)+3*v(x,t)*diff(v(x,t),x)=0,diff(v(x,t),t)+2*diff(v(x,t),x$3)+2*u(x,t)*diff(v(x,t),x)+diff(u(x,t),x)*v(x,t)=0]",
"[diff(u(x,y,z,t),t)+u(x,y,z,t)^2*diff(u(x,y,z,t),x)+diff(u(x,y,z,t),x$3)+diff(u(x,y,z,t),x,y,y)+diff(u(x,y,z,t),x,z,z)=0],3,3"
],
"desc": "Real Automated Elliptic Equation Method"
},
{
"eid": "4",
"etype": "SEMPS",
"ename": "SEMPS",
"equation": [
"[diff(u(x,t),t)+u(x,t)*diff(u(x,t),x)+p*diff(u(x,t),x$3)=0],[diff(f(x),x)=R*g(x)^2,diff(g(x),x)=mu*g(x)*f(x),g(x)^2=s+R*f(x)^2],[f(x),g(x)]",
"[diff(u(x, t), t)+u(x, t)*(diff(u(x, t), x))+p*diff(u(x, t), x$3) = 0],[diff(f(x), x) = g(x)*h(x), diff(g(x), x) = -f(x)*h(x), diff(h(x), x) = -n^2*g(x)*f(x), g(x)^2 = 1-f(x)^2, h(x)^2 = 1-n^2*f(x)^2],[f(x), g(x), h(x)]"
],
"desc": "Sub Eq Method and Polynomial Solutions"
},
{
"eid": "5",
"etype": "AutoBT",
"ename": "AutoBT",
"equation": [
"diff(w(x,t),t)-6*w(x,t)*diff(w(x,t),x)+diff(w(x,t),x$3)",
"diff(w(x,t),t)+p*w(x,t)^2*diff(w(x,t),x)+diff(w(x,t),x$3)"
],
"desc": "Automated Bäcklund Transformation method"
},
{
"eid": "6",
"etype": "CRE",
"ename": "CRE",
"equation": [
"[diff(u(x,t),t)+6*u(x,t)*diff(u(x,t),x)+diff(u(x,t),x$3)=0]",
"[diff(u(x,t),t)+u(x,t)*diff(u(x,t),x)+diff(v(x,t),x)=0,diff(v(x,t),t)+diff(u(x,t),x)+diff(u(x,t)*v(x,t),x)+diff(u(x,t),x,x,x)=0]"
],
"desc": "Automated Consistent Riccati Expansion Method"
},
{
"eid": "7",
"etype": "ADSP",
"ename": "ADSP",
"equation": [
"[diff(u(x, t), t)+6*u(x, t)*diff(u(x, t), x)+diff(u(x, t), x$3) = 0]",
"[diff(u(x, t), t$2)-diff(u(x, t), x$2)-diff(u(x, t), x$4)-3*diff(u(x, t)^2, x$2) = 0]",
"[diff(u(x, t), t)-(1/4)*diff(u(x, t), x$5)-5*diff(u(x, t), x)*diff(u(x, t), x$2)-(5/2)*u(x, t)*diff(u(x, t), x$3)-(15/2)*u(x, t)^2*diff(u(x, t), x) = 0]",
"[diff(u(x, t), t)-6*u(x, t)*diff(u(x, t), x)+diff(u(x, t), x, x, x)-6*v(x, t)*diff(v(x, t), x) = 0, diff(v(x, t), t)-6*diff(u(x, t)*v(x, t), x)+diff(v(x, t), x, x, x) = 0]"
],
"desc": "Automated Derivation Solutions for PDE"
},
{
"eid": "8",
"etype": "ADMP",
"ename": "ADMP",
"equation": [
"[diff(y(x),x$2)=3/4*y(x)+y(x/2)-x^2+2],[y(0)=0,D(y)(0)=0],[y(x)],output=plot,err=true,x=0..1,y=0..1,index=15,pade=[7,7]",
"[diff(y(t),t$alpha)+y(t)=0],[y(0)=1,D(y)(0)=0],alpha=1.3,index=50,output=plot,t=0..20,y=-0.2..1,pade=[150,150]"
],
"desc": "Adomian Decomposition Method Package"
},
{
"eid": "9",
"etype": "CharSets",
"ename": "CharSets",
"equation": [
"[x+2*y-3*z-5, y+4*z-2, 2*x-y+z-1],{x,y,z}",
"[2*x^2+x*y-y+1, -3*x*y+2*y^2-x-2, -3*x*y^2+2*y^3+2*x^2-3*y+1],[x,y]"
],
"desc": "A implementation of Ritt-Wu's characteristic sets method"
},
{
"eid": "10",
"etype": "wsolve",
"ename": "wsolve",
"equation": [
"[x+2*y-3*z-5, y+4*z-2, 2*x-y+z-1],{x,y,z}",
"[2*x^2+x*y-y+1, -3*x*y+2*y^2-x-2, -3*x*y^2+2*y^3+2*x^2-3*y+1],[x,y]"
],
"desc": "Nonlinear algebraic system solver developed by Dingkang Wang of KLMM"
}
]
1、读取并绑定表格
$("#btnOverview").click(function () {;
var eHtml = ' ';
for (var i = 0; i < edata.length; i++) {
console.log(edata[i]);
console.log(eHtml);
if (i == 0)
eHtml += '';
else
eHtml += ' ';
eHtml += '' + edata[i].eid + ' '
eHtml += '' + edata[i].etype + ' '
eHtml += '' + edata[i].ename + ' '
eHtml += '' + edata[i].equation[0] + ' '
eHtml += '' + edata[i].desc + ' '
eHtml += ' '
}
$("#indextbody").html(eHtml);
})
2、按类型查询
$("#btnSearch").click(function () {
console.log("btnSearch");
var searchType = $("#sType").val();
console.log(searchType);
var eHtml = ' ';
for (var i = 0; i < edata.length; i++) {
if (edata[i].etype == searchType) {
for (var j = 0; j < edata[i].equation.length; j++) {
if (i == 0)
eHtml += '';
else
eHtml += ' ';
eHtml += '' + edata[i].eid + ' '
eHtml += '' + edata[i].etype + ' '
eHtml += '' + edata[i].ename + ' '
eHtml += '' + edata[i].equation[j] + ' '
eHtml += '' + edata[i].desc + ' '
eHtml += ' '
}
}
}
$("#lookuptable").html(eHtml);
})
3、录入新数据条目
$("#btnSave").click(function () {
console.log("btnSearch");
var saveType = $("#sType").val();
var saveName = $("#sName").val();
var saveEqua = $("#sEqua").val();
var saveDesc = $("#sDesc").val();
var saveJSON = {
"eid": edata.length+1,
"etype": saveType,
"ename": saveName,
"equation": saveEqua,
"desc": saveDesc
}
edata.push(saveJSON);
alert("微分公式插入完成");
})
fake function 方程等同性检索