线程的最大特点是资源的共享性,但资源共享中的同步问题是多线程编程的难点。linux下提供了多种方式来处理线程同步,最常用的是互斥锁、条件变量和信号量。
通过锁机制实现线程间的同步。
1. 初始化锁。
在Linux下,线程的互斥量数据类型是pthread_mutex_t。在使用前,要对它进行初始化。
静态分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
动态分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);
2. 加锁。
对共享资源的访问,要对互斥量进行加锁,如果互斥量已经上了锁,调用线程会阻塞,直到互斥量被解锁。
int pthread_mutex_lock(pthread_mutex *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
3. 解锁。在完成了对共享资源的访问后,要对互斥量进行解锁。
int pthread_mutex_unlock(pthread_mutex_t *mutex);
4. 销毁锁。锁在是使用完成后,需要进行销毁以释放资源。
int pthread_mutex_destroy(pthread_mutex *mutex);
静态态初始化,pthread_cond_t cond = PTHREAD_COND_INITIALIER;
动态初始化,int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond); //解除所有线程的阻塞
int pthread_cond_destroy(pthread_cond_t *cond);
使用示例:
while (1)
{
//这个mutex主要是用来保证pthread_cond_wait的并发性
pthread_mutex_lock(&mtx);
while (head == NULL)
{
//这个while要特别说明一下,单个pthread_cond_wait功能很完善,为何
//这里要有一个while (head == NULL)呢?因为pthread_cond_wait里的线
//程可能会被意外唤醒,如果这个时候head != NULL,则不是我们想要的情况。
//这个时候,应该让线程继续进入pthread_cond_wait
// pthread_cond_wait会先解除之前的pthread_mutex_lock锁定的mtx,
//然后阻塞在等待对列里休眠,直到再次被唤醒(大多数情况下是等待的条件成立
//而被唤醒,唤醒后,该进程会先锁定先pthread_mutex_lock(&mtx);,再读取资源
//用这个流程是比较清楚的
pthread_cond_wait(&cond, &mtx);
p = head;
head = head->n_next;
printf("Got %d from front of queue/n", p->n_number);
free(p);
}
pthread_mutex_unlock(&mtx); //临界区数据操作完毕,释放互斥锁
}
int sem_init (sem_t *sem , int pshared, unsigned int value);
int sem_wait(sem_t *sem);
int sem_post(sem_t *sem);
int sem_destroy(sem_t *sem);
读写锁与互斥量的功能类似,对临界区的共享资源进行保护!互斥量一次只让一个线程进入临界区,读写锁比它有更高的并行性。读写锁有以下特点:
1.如果一个线程用读锁锁定了临界区,那么其他线程也可以用读锁来进入临界区,这样就可以多个线程并行操作。但这个时候,如果再进行写锁加锁就会发生阻塞,写锁请求阻塞后,后面如果继续有读锁来请求,这些后来的读锁都会被阻塞!这样避免了读锁长期占用资源,防止写锁饥饿!
2.如果一个线程用写锁锁住了临界区,那么其他线程不管是读锁还是写锁都会发生阻塞!
宏常量初始化pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;
函数初始化
#include
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr);
rwlock:读写锁的pthread_rwlock_t结构指针
attr:读写锁的属性结构指针。不需要别的属性默认为NULL。
读写锁加锁与解锁#include
int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);
#include
#include
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock, const struct timespec *restrict abs_timeout);
int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock, const struct timespec *restrict abs_timeout);
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
barrier(屏障)与互斥量,读写锁,自旋锁不同,它不是用来保护临界区的。相反,它跟条件变量一样,是用来协同多线程一起工作!!!
条件变量是多线程间传递状态的改变来达到协同工作的效果。屏障是多线程各自做自己的工作,如果某一线程完成了工作,就等待在屏障那里,直到其他线程的工作都完成了,再一起做别的事。举个通俗的例子:
1.对于条件变量。在接力赛跑里,1号队员开始跑的时候,2,3,4号队员都站着不动,直到1号队员跑完一圈,把接力棒给2号队员,2号队员收到接力棒后就可以跑了,跑完再给3号队员。这里这个接力棒就相当于条件变量,条件满足后就可以由下一个队员(线程)跑。
2.对于屏障。在百米赛跑里,比赛没开始之前,每个运动员都在赛场上自由活动,有的热身,有的喝水,有的跟教练谈论。比赛快开始时,准备完毕的运动员就预备在起跑线上,如果有个运动员还没准备完(除去特殊情况),他们就一直等,直到运动员都在起跑线上,裁判喊口号后再开始跑。这里的起跑线就是屏障,做完准备工作的运动员都等在起跑线,直到其他运动员也把准备工作做完!
创建屏障#include
int pthread_barrier_init(pthread_barrier_t *restrict barrier, const pthread_barrierattr_t *restrict attr, unsigned count);
#include
int pthread_barrier_wait(pthread_barrier_t *barrier);
函数的
成功返回值有2个
,第一个成功返回的线程会返回PTHREAD_BARRIER_SERIAL_THREAD,其他线程都返回0。可以用第一个成功返回的线程来做一些善后处理工作。
#include
int pthread_barrier_destroy(pthread_barrier_t *barrier);