博弈——多人Nash 平衡

Problem:N人猜[1,100]内的整数,每个人都希望猜到所有数平均值的三倍,假设每个人足够理性,那么你应该猜多少?

===================================================

博弈三要素:

Players: N={1,2,...n},n>2;

Actions:选{1,2,...33},记ai为每个人的选择;

Profit / Payoff function: Ui

U(ai)=1, if ai 最接近所有人所猜数的average的3倍

U(ai)=0, if 有人比ai更接近average的3倍

U(ai)=1/k, if 有k个人都猜中了最接近average的3倍的这个数,而且ai在这k个人中


分析:

先给个提示吧,想想再看答案? 
提示:所有人的选择结果是相同的
= =

= =

= =

= =

= =

= =

= =

= =

= =

= =

= =

= =

= =

= =

= =

= =

= =

= =

看答案咯!

每个人选的最少为1,即average>=1, 如果average=2,则每个人都想选 3*average=6,这样average变成6;如果average=6,则每个人想选average*3=18...

……

iteration

……

所以最终每个人都按照最理智的方法选的话,结果是一个Nash equilibrium:每个人都选了100……





你可能感兴趣的:(杂感)