malloc kmalloc vmalloc

  1. 简单的说:
kmalloc和vmalloc是分配的是内核的内存,malloc分配的是用户的内存
kmalloc保证分配的内存在物理上是连续的,vmalloc保证的是在虚拟地址空间上的连续,malloc不保证任何东西(这点是自己猜测的,不一定正确)
kmalloc能分配的大小有限,vmalloc和malloc能分配的大小相对较大
内存只有在要被DMA访问的时候才需要物理上连续

vmalloc比kmalloc要慢

2. 详细的解释:

对于提供了MMU(存储管理器,辅助操作系统进行内存管理,提供虚实地址转换等硬件支持)的处理器而言,Linux提供了复杂的存储管理系统,使得进程所能访问的内存达到4GB。 

       进程的4GB内存空间被人为的分为两个部分--用户空间与内核空间。用户空间地址分布从0到3GB(PAGE_OFFSET,在0x86中它等于0xC0000000),3GB到4GB为内核空间。      内核空间中,从3G到vmalloc_start这段地址是物理内存映射区域(该区域中包含了内核镜像、物理页框表mem_map等等),比如我们使用 的 VMware虚拟系统内存是160M,那么3G~3G+160M这片内存就应该映射物理内存。在物理内存映射区之后,就是vmalloc区域。对于 160M的系统而言,vmalloc_start位置应在3G+160M附近(在物理内存映射区与vmalloc_start期间还存在一个8M的gap 来防止跃界),vmalloc_end的位置接近4G(最后位置系统会保留一片128k大小的区域用于专用页面映射) kmalloc和get_free_page申请的内存位于物理内存映射区域,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因此存在较简单的转换关系,virt_to_phys()可以实现内核虚拟地址转化为物理地址:

    #define __pa(x) ((unsigned long)(x)-PAGE_OFFSET)
   extern inline unsigned long virt_to_phys(volatile void * address)
   {
        return __pa(address);
   }
上面转换过程是将虚拟地址减去3G(PAGE_OFFSET=0XC000000)。
与之对应的函数为phys_to_virt(),将内核物理地址转化为虚拟地址:
   #define __va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET))
   extern inline void * phys_to_virt(unsigned long address)
   {
        return __va(address);
   }
virt_to_phys()和phys_to_virt()都定义在include/asm-i386/io.h中。


而vmalloc申请的内存则位于vmalloc_start~vmalloc_end之间,与物理地址没有简单的转换关系,虽然在逻辑上它们也是连续的,但是在物理上它们不要求连续。

我们用下面的程序来演示kmalloc、get_free_page和vmalloc的区别:
#include
#include
#include
MODULE_LICENSE("GPL");
unsigned char *pagemem;
unsigned char *kmallocmem;
unsigned char *vmallocmem;


int __init mem_module_init(void)
{
    //最好每次内存申请都检查申请是否成功
//下面这段仅仅作为演示的代码没有检查
pagemem = (unsigned char*)get_free_page(0);
printk("<1>pagemem addr=%x", pagemem);


kmallocmem = (unsigned char*)kmalloc(100, 0);
printk("<1>kmallocmem addr=%x", kmallocmem);


vmallocmem = (unsigned char*)vmalloc(1000000);
printk("<1>vmallocmem addr=%x", vmallocmem);


return 0;
}


void __exit mem_module_exit(void)
{
free_page(pagemem);
kfree(kmallocmem);
vfree(vmallocmem);
}


module_init(mem_module_init);
module_exit(mem_module_exit);

我们的系统上有160MB的内存空间,运行一次上述程序,发现pagemem的地址在0xc7997000(约3G+121M)、kmallocmem 地址在0xc9bc1380(约3G+155M)、vmallocmem的地址在0xcabeb000(约3G+171M)处,符合前文所述的内存布局。

3. usermanual

        kmalloc()用于申请较小的、连续的物理内存
 . 以字节为单位进行分配,在
 . void *kmalloc(size_t size, int flags) 分配的内存物理地址上连续,虚拟地址上自然连续
 . gfp_mask标志:什么时候使用哪种标志?如下:
———————————————————————————————-
情形                          相应标志
———————————————————————————————-
进程上下文,可以睡眠         GFP_KERNEL
进程上下文,不可以睡眠         GFP_ATOMIC
中断处理程序                   GFP_ATOMIC
软中断                         GFP_ATOMIC
Tasklet                       GFP_ATOMIC
用于DMA的内存,可以睡眠       GFP_DMA | GFP_KERNEL
用于DMA的内存,不可以睡眠     GFP_DMA | GFP_ATOMIC
———————————————————————————————-
 . void kfree(const void *ptr)
释放由kmalloc()分配出来的内存块


vmalloc()
用于申请较大的内存空间,虚拟内存是连续的
 . 以字节为单位进行分配,在
 . void *vmalloc(unsigned long size) 分配的内存虚拟地址上连续,物理地址不连续
 . 一般情况下,只有硬件设备才需要物理地址连续的内存,因为硬件设备往往存在于MMU之外,根本不了解虚拟地址;但为了性能上的考虑,内核中一般使用 kmalloc(),而只有在需要获得


大块内存时才使用vmalloc(),例如当模块被动态加载到内核当中时,就把模块装载到由vmalloc()分配 的内存上。
 .void vfree(void *addr),这个函数可以睡眠,因此不能从中断上下文调用。

你可能感兴趣的:(面试)