python3+openCV实现图片的人脸人眼检测,原理+参数+源代码

 

 

上学时候用matlab学过一些图像处理的基础知识,当时课程作业是用haar实现人脸检测

but当时是心思根本不在图像处理上,so找了个同学帮忙做的,自己没上心

然鹅天道好轮回,现在捡起来了原来的算法一脸懵逼,自己挖的坑再深也得跳下去啊!

 python3+openCV实现图片的人脸人眼检测,原理+参数+源代码_第1张图片

先上一张经典的lena图镇场子!

 

流程图:

读取一张图片→转灰度图→人眼/人脸检测→标识出来→显示/保存结果

其中,重中之重就是怎样进行检测?下面主要讲一下openCV中现成的一种算法——Haar

算法详解请参考https://blog.csdn.net/playezio/article/details/80471000

如果看不懂很正常,这里用到了太多的数学、图像处理的相关知识,要补的知识点实在是太多太多了!

 

 简单一句话来说:用一个“特征集”去“滑动”匹配待检测的图片,如果图片中某个部分“符合”要求则会标记出来

 

 特征集是个啥?

可以用openCV里封装好的,比如人脸的特征集合(具体是什么我也没有看懂内部算法……)、还有其他的比如eye、body、汽车等等,这些是openCV里已经写好的,具有普适性可以供大家直接调用;

当然也可以自己建立,比如你想建立一个鼠标的特征集等等,难度较大

 

滑动?还摩擦摩擦呢……

如果特征集是个10*10的窗口,待检测图片是100*100的大小,那么这个小窗口会在图片上从上到下,从左到右,步长为1(顺序和步长不确定,只是推测是这么进行的)进行匹配,这称为滑动窗口技术(sliding window)

在此条件下,遍历一张图片所需要的匹配次数是(100/10*1)*(100/10*1)=100次

 

“金字塔流程”——不是埃及辣个

如果有个10*10的眼睛的特征集,待检测图片是一张100*100的大头照,一只眼睛的部分可能占了50*50(比例肯定不对,领会一下精神),那么用这个小窗口怎么匹配都匹配不到啊,怎么办?

把图片缩小到原来的五分之一或者把特征集扩大到5倍不就好了嘛!

在算法中是一点一点试验这个缩放倍数的,就如同金字塔横切面一样。因此从默认的窗口遍历一遍不够,因此最终结果比100次要大的多,这个缩放倍数越小,计算量越大

 

符合要求?这里不展开讲解了,太难!总之一旦符合,就会被标记出来,因此一幅图中如果只有一张脸,但是周围可能会有很多标记的方框(滑动窗口技术和金字塔流程共同导致的)以及可能看起来像人脸的部分,如下图:

 python3+openCV实现图片的人脸人眼检测,原理+参数+源代码_第2张图片(测试结果不是我做的,网上找的)

但是我们想要的结果就是标记出来两张脸就好了,该合并的就合并,该抛弃的就抛弃(所以说人还是要比机器智能一点的嘛)

首先,一个矩形在图片中有四个参数(x,y,width,height),即(中心横坐标、中心纵坐标、半宽、半长),判断两个矩形这四个参数的差值,在一定范围内则可认为这些矩形是“同一个组织”

 

python3+openCV实现图片的人脸人眼检测,原理+参数+源代码_第3张图片

结果是一幅图片中可能有不同的组织,每个组织的人数(也就是相似的矩形)不同,保留人数多的组织,抛弃人数少的组织(自定义阈值)。

其中,人数多的组织需要选定一个为代表(在算法里是取平均值),因此结果就是

python3+openCV实现图片的人脸人眼检测,原理+参数+源代码_第4张图片

 

 到此为止,基本检测的重点就说完了,下面讲一下在Python3中怎么结合openCV实现

 

安装环境什么的请自行百度吧,需要引用的是cv2模块,这个模块里的两个方法比较重要

 

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

CascadeClassifier是一种级联分类器,目前提供的分类器包括Haar分类器和LBP分类器,可选的特征池(xml文件)已经写好,看名称大体有:人脸、人眼、身体等等。
我这里存储的目录是:D:\Anaconda3\Library\etc,其中有两个文件夹

 

本例中使用的是laarcascades下的这两个xml文件:

python3+openCV实现图片的人脸人眼检测,原理+参数+源代码_第5张图片

选定好特征池后,下面是调用方法detecMultiScale()
faces = face_cascade.detectMultiScale(gray, 1.1, 5)

官方定义:

python3+openCV实现图片的人脸人眼检测,原理+参数+源代码_第6张图片

 
   

其中需要注意的几个参数设置:

scaleFactor : 指定每个图像缩放比例(也有文档上说是滑动窗口扩大比例,理论上说后者的运算速度会快一丢丢),有些参考文献上说是默认为1.1,但是我并没有找到相关默认参数值。数值越小(但是也需要大于1),遍历的次数越多,计算时间越长

minNeighbors:应该是“团伙中成员的个数”,(有些参考文献上说默认是3,同样我没找到依据,表明至少有3次重叠检测,程序才认为目标确实存在)。数值越大,检测结果理论上会越少,但是过大或过小都会影响准确率,一般取值3~6

flags:对于新的分类器没有用

minSize和maxSize用来限制得到的目标区域的范围,后者一般不自行设定

 



 

源代码:

 1 import cv2
 2 
 3 def pic_detect(filename):
 4     """
 5     静态图片人脸、人眼检测
 6     :param filename:  被检测的图片路径
 7     :return: None
 8     """
 9     # cv2级联分类器CascadeClassifier.xml文件为训练数据
10     face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')#人脸
11     eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')#人眼
12 
13     img = cv2.imread(filename) # 读取图片
14     gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 转灰度图
15     faces = face_cascade.detectMultiScale(gray, 1.1, 5,   minSize = (5,5))#  进行人脸检测,调整参数
16     eyes = eye_cascade.detectMultiScale(gray,1.1,5)
17     print('发现了{0}个人的脸呦!'.format(len(faces)))
18 
19     # 绘制人脸矩形框
20     for (x, y, w, h) in faces:
21         img = cv2.rectangle(img, (x, y), (x+w, y+h), (0, 250, 0), 1)#中心位置、长宽、画笔颜色及大小
22         for (ex, ey, ew, eh) in eyes:
23             img = cv2.rectangle(img, (ex, ey), (ex + ew, ey + eh), (250, 0, 0), 1)
24 
25     cv2.namedWindow('face_detect')# 命名显示窗口
26     cv2.imshow('face_detect', img)# 显示图片
27     cv2.imwrite(filename+'_result.jpg', img)# 保存图片
28     cv2.waitKey(0)# 设置显示时间,0表示一直显示
29     cv2.destroyAllWindows()
30     return None
31 
32 filename = 'kkw.jpg'
33 pic_detect(filename)

 

 结果:

python3+openCV实现图片的人脸人眼检测,原理+参数+源代码_第7张图片

 

 检测不了或者检测失误:

1. 侧脸

python3+openCV实现图片的人脸人眼检测,原理+参数+源代码_第8张图片

 

 

2. 脸角度偏斜,比如将图片旋转90度以后……

python3+openCV实现图片的人脸人眼检测,原理+参数+源代码_第9张图片

 

python3+openCV实现图片的人脸人眼检测,原理+参数+源代码_第10张图片

 

 python3+openCV实现图片的人脸人眼检测,原理+参数+源代码_第11张图片

 

3. 戴墨镜的话可以检测到人脸,但是眼睛就gg了

python3+openCV实现图片的人脸人眼检测,原理+参数+源代码_第12张图片

 

 4. 不清楚的图片或者有遮挡的

python3+openCV实现图片的人脸人眼检测,原理+参数+源代码_第13张图片

 python3+openCV实现图片的人脸人眼检测,原理+参数+源代码_第14张图片

 

 5. 莫名其妙的乱入……

python3+openCV实现图片的人脸人眼检测,原理+参数+源代码_第15张图片

 

 python3+openCV实现图片的人脸人眼检测,原理+参数+源代码_第16张图片

 

 总结:

1. 调整参数可能会得到不同的结果

2. 总体来说,此方法的对被检测的图片要求较高,检测质量一般

3. 应该算是检测的一个入门方法,这条路上可优化的地方太多了……研究算法的都是人才啊

转载于:https://www.cnblogs.com/aby321/p/11025129.html

你可能感兴趣的:(python3+openCV实现图片的人脸人眼检测,原理+参数+源代码)