- 情感主播的10个特征,先来看看这个
糖葫芦很甜
情感主播以其独特的魅力成为了众多人心中的温暖港湾。他们不仅传递着生活的酸甜苦辣,更在无形中治愈着每一个孤独或迷茫的灵魂。5星公会,免费加入,一对一指导扶持↓微信在文章底部。在直播或节目中,情感主播始终保持真诚、开放的沟通态度。他们愿意倾听听众的心声,分享自己的见解和感受,与听众建立起一种平等、互信的交流关系。这种真诚的沟通态度,让听众感受到被尊重和被重视的喜悦。每个成功的情感主播都有其独特的个人魅
- OpenCV引擎:驱动实时应用开发的科技狂飙
芯作者
DD:计算机科学领域opencv计算机视觉
在人工智能与计算机视觉技术迅猛发展的今天,实时图像处理已成为工业自动化、自动驾驶、医疗诊断、增强现实等领域的核心技术需求。而**OpenCV(OpenSourceComputerVisionLibrary)**作为全球最活跃的开源计算机视觉库,正以其强大的算法生态、跨平台兼容性以及持续进化的架构设计,成为驱动实时应用开发的“数字引擎”。本文将深入剖析OpenCV如何通过技术创新突破实时处理的性能极
- 机器学习初学者理论初解
Mikhail_G
机器学习人工智能
大家好!为什么手机相册能自动识别人脸?为什么购物网站总能推荐你喜欢的商品?这些“智能”背后,都藏着一位隐形高手——机器学习(MachineLearning)。一、什么是机器学习?简单说,机器学习是教计算机从数据中自己找规律的技术。就像教孩子认猫:不是直接告诉他“猫有尖耳朵和胡须”,而是给他看100张猫狗照片,让他自己总结出猫的特征。传统程序vs机器学习传统程序:输入规则+数据→输出结果(例:按“温
- Embedding与向量数据库
玖月初玖
大模型应用开发基础人工智能embedding数据库
1.Embedding是什么EmbeddingModel是一种机器学习模型,它的核心任务是将离散的、高维的符号(如单词、句子、图片、用户、商品等)转换成连续的、低维的向量(称为“嵌入”或“向量表示”),并且这个向量能有效地捕捉原始符号的语义、关系或特征。1.1通俗理解EmbeddingModel是让计算机“理解”世界的核心工具,把“文字、图片、音频”等信息变成一串有意义的数字我们称之为“向量”。类
- 深入解析部分可观测马尔可夫决策过程(POMDP)及其应用
码字的字节
算法人工智能马尔可夫决策过程POMDP
POMDP的基本概念与模型部分可观测马尔可夫决策过程(PartiallyObservableMarkovDecisionProcess,POMDP)是强化学习领域中处理不完全信息环境的核心数学模型。与完全可观测的马尔科夫决策过程(MDP)相比,POMDP更贴近现实世界中智能体面临的感知局限,其核心特征在于系统状态无法被直接观测,智能体必须通过间接的观测信号来推断潜在状态。POMDP的七元组模型PO
- 微软CEO Satya Nadella提出AI重构法则:从范式跃迁到社会盈余
TGITCIC
AI-大模型的落地之道AI大模型大模型AIAIAgentAI智能体AI落地大模型落地
1.范式跃迁:AI作为第四次技术革命的核心驱动力1.1技术代际的复合效应从客户端到互联网、移动互联网再到云计算,技术平台的演进始终遵循“平台变革→产品跃迁→反哺平台”的螺旋上升逻辑。AI的特殊性在于其叠加了前三代技术的基础设施能力:云计算:提供百亿级参数模型的分布式训练能力互联网:构建全球数据流动与反馈闭环移动终端:扩展AI服务的触达边界技术范式核心特征代表产品对AI的支撑作用客户端本地化计算Wi
- 在NLP深层语义分析中,深度学习和机器学习的区别与联系
在自然语言处理(NLP)的深层语义分析任务中,深度学习与机器学习的区别和联系主要体现在以下方面:一、核心区别特征提取方式机器学习:依赖人工设计特征(如词频、句法规则、TF-IDF等),需要领域专家对文本进行结构化处理。例如,传统情感分析需人工定义“情感词库”或通过词性标注提取关键成分。深度学习:通过神经网络自动学习多层次特征。例如,BERT等模型可从原始文本中捕获词向量、句法关系甚至篇章级语义,无
- 2019-07-27文献阅读记录
一行白鹭上青天
题目:城市群视角下空间联系与城市扩张的关联分析期刊:地理科学进展ProgressinGeography作者:焦利民,唐欣,刘小平摘要:在城市群发展的不同阶段,城市扩张表现出不同的时空特征。从城市群视角研究城市扩张的时空规律,对于理解城市扩张与城市群网络化组织结构之间的复杂耦合关系具有重要意义。本文以长江三角洲城市群为例,基于交通网络、引力模型和空间句法模型,结合1980、1990、2000和201
- AI原生应用中的用户画像构建:从理论到实践全解析
AI原生应用中的用户画像构建:从理论到实践全解析关键词:用户画像、AI原生应用、特征工程、机器学习、个性化推荐、数据隐私、模型优化摘要:本文全面解析AI原生应用中用户画像构建的全过程,从基础概念到核心技术,再到实际应用和未来趋势。我们将用通俗易懂的方式讲解用户画像如何像"数字身份证"一样工作,深入探讨特征提取、模型构建等关键技术,并通过实际案例展示用户画像在推荐系统、精准营销等场景中的应用。文章还
- 旋转目标检测:Deep Spatial Feature Transformation for Oriented Aerial Object Detection【方法解析】
沉浸式AI
《AI与SLAM论文解析》人工智能计算机视觉旋转目标检测
DeepSpatialFeatureTransformationforOrientedAerialObjectDetection目录DeepSpatialFeatureTransformationforOrientedAerialObjectDetection摘要关键词引言相关工作旋转对齐模块特征对齐方法旋转对齐模块特征选择模块摘要航空图像中的目标检测在计算机视觉领域引起了广泛关注。不同于自然图像
- 学习人工智能开发的详细指南
Ws_
学习人工智能python
一、引言人工智能(AI)开发是一个充满挑战与机遇的领域,它融合了数学、计算机科学、统计学、认知科学等多个学科的知识。随着大数据、云计算和深度学习技术的快速发展,AI已经成为推动社会进步和产业升级的关键力量。本文将为初学者提供一份详细的学习指南,帮助大家逐步掌握AI开发的核心技能。二、基础知识准备数学基础:线性代数:理解向量、矩阵、线性变换等基本概念,掌握矩阵运算和特征值分解等技巧。概率论与统计学:
- 【技术工具】python人员照片简介批量对照(千人级)
Allen_Lyb
医疗高效编程研发python开发语言自然语言处理健康医疗语言模型
要实现根据照片上的工号批量添加人员姓名和工号到照片上,可以按照以下步骤操作(使用Python+PIL/Pillow+OpenCV+pytesseract):解决方案步骤准备数据创建人员信息表(CSV格式):姓名,工号确保所有照片文件名包含工号(如工号.jpg),或照片中有清晰可见的工号文本安装依赖库pipinstallpillowopencv-pythonpandaspytesseract#额外安
- Python爬虫【四十五章】爬虫攻防战:异步并发+AI反爬识别的技术解密
程序员_CLUB
Python入门到进阶python爬虫人工智能
目录引言:当爬虫工程师遇上AI反爬官一、异步并发基础设施层1.1混合调度框架设计1.2智能连接池管理二、机器学习反爬识别层2.1特征工程体系2.2轻量级在线推理三、智能决策系统3.1动态策略引擎3.2实时对抗案例四、性能优化实战4.1全链路压测数据4.2典型故障处理案例五、总结:构建智能化的爬虫生态系统Python爬虫相关文章(推荐)引言:当爬虫工程师遇上AI反爬官在大数据采集领域,我们正经历着技
- 有机酸:结构解析、生物功能
优宁维生物
经验分享
有机酸是指分子结构中含有可解离羧基(-COOH)或磺酸基(-SO₃H)等酸性官能团的一类有机化合物。其中羧酸类(R-COOH)作为最典型的有机酸家族,其酸性特征直接源于羧基中羟基氧的质子解离能力。除羧酸外,磺酸(R-SO₃H)、亚磺酸(R-SOOH)、硫醇酸(R-SH)等含硫含氧酸类也属于重要的有机酸衍生物。在有机合成领域,羧酸可通过酯化反应与醇类生成特征性酯类产物。从结构特征分析,羧酸可视为烃基
- AI人工智能领域知识图谱在文本分类中的应用技巧
AI天才研究院
AI大模型企业级应用开发实战人工智能知识图谱分类ai
AI人工智能领域知识图谱在文本分类中的应用技巧关键词:知识图谱、文本分类、图神经网络、实体关系抽取、深度学习、自然语言处理、特征融合摘要:本文深入探讨了知识图谱在文本分类任务中的应用技巧。我们将从知识图谱的基本概念出发,详细分析如何将结构化知识融入传统文本分类流程,介绍最新的图神经网络方法,并通过实际案例展示知识增强型文本分类系统的构建过程。文章特别关注知识表示学习与文本特征的融合策略,以及在不同
- 解读一个大学专业——信号与图像处理
专业定义与核心内容维度内容定义研究如何采集、处理、分析和理解一维信号(语音、雷达、脑电)和二维/三维图像(医学、遥感、工业视觉)。关键词数字信号处理(DSP)、图像处理、计算机视觉、模式识别、压缩感知、深度学习、GPU加速、嵌入式系统。技术栈MATLAB/Python+OpenCV/PyTorch+DSP/FPGA+GPU(CUDA)第五届先进算法与信号、图像处理国际学术会议(AASIP2025)
- 单身程序员的幻想女友模拟器,面对对象的三大特征
运维帮手大橙子
开发语言javaintellij-idea对象面对对象windows程序人生
你new出来的不仅是一个对象,更是一段陪伴、一份慰藉。你孤独的时候想有人和你说说话。而真正的那个她,也一定会出现,和你肩并肩看代码、看星星。项目结构SweetGirlfriendSimulator/├──src/└──com/└──love/├──Main.java//启动类├──Person.java//抽象人类├──IdealGirlfriend.java//理想女友类(可爱温柔)└──Coo
- 漏洞扫描 + 渗透测试:双轮驱动筑牢网络安全防线
白山云北诗
网络安全行业知识web安全网络安全渗透测试漏洞扫描安全检测
在网络安全领域,单一的防护手段往往难以应对复杂的威胁环境。漏洞扫描通过自动化工具快速发现潜在风险,渗透测试则以攻击者视角验证漏洞的实际危害,二者结合形成“自动化检测+人工验证”的双轮驱动模式,已成为企业筑牢安全防线的核心策略。一、漏洞扫描与渗透测试的协同价值漏洞扫描和渗透测试并非相互替代,而是互补的安全检测手段:漏洞扫描:自动化发现潜在风险漏洞扫描工具通过预设规则和特征库,对网络设备、服务器、应用
- 凯里10家正规亲子鉴定机构中心地址一览(凯里附2024最新鉴定攻略)
鼎律基因刘主任
亲子鉴定主要是根据一个人的血型,以及除血型以外的纯遗传性状的遗传规律。遗传性状是由位于细胞核染色体上的基因控制的,个体特征是通过基因在父母和子代之间的传递来遗传的。基因的传递遵循一定的规律。后代的基因来自父母,一半来自父亲,一半来自母亲。进行亲子鉴定的另一个必要条件是,被鉴定人同意鉴定。一方面民事诉讼法不能强制不愿鉴定的当事人进行亲子鉴定,另一方面诉讼一方当事人无义务协助对方获得不利于自己的证据,
- 10-1 商业摄影的第一性原理
efe183ad77c6
1商业广告摄影的定义:用于制作商业图片的摄影技术。商业图片是指用做商业用途或具备二次商业用途特征的影像。——严冬而广告的本质就是吸引受众的注意力。人的注意力有两个特点,第一是有意识的时候,注意力就会有,而且随时产生随时花掉;第二是,自动筛选常见、不重要的信息。2我在说我们成年人应该怎么学习的时候,我总结了3个步骤:1寻找知识边界,并建立模型;2针对模型,刻意练习;3刻意反思。第一步寻找系统边界,也
- MATLAB在工业缺陷检测中的应用
本文还有配套的精品资源,点击获取简介:缺陷检测、伤痕检测、瑕疵检测和划痕检测是工业自动化和质量控制中至关重要的环节,MATLAB作为一种高级编程环境,在图像处理和计算机视觉任务中扮演了重要角色。本文详细介绍了如何使用MATLAB实现这些检测过程,包括图像采集、预处理、特征提取和决策制定等步骤。通过介绍内置图像处理工具箱中的应用,色彩转换技术、边缘检测算法以及形态学操作等方法,我们阐述了如何识别和处
- Orange3实战教程:图像分析---图像嵌入
err2008
Orange3实战教程数据挖掘神经网络自然语言处理机器学习计算机视觉深度学习orange3中文版
图像嵌入通过深度神经网络实现图像嵌入。输入图像:图像列表。输出嵌入向量:用数字向量表示的图像。跳过的图像:未计算嵌入向量的图像列表。图像嵌入功能读取图像并将其上传至远程服务器或本地计算。深度学习模型用于为每张图像计算特征向量。该功能返回一个增强的数据表,包含额外的列(图像描述符)。图像可以通过导入图像小部件导入,也可以通过电子表格中的图像路径导入。在这种情况下,包含图像路径的列需要一个三行表头,第
- 宗毅说 | 乌卡瑟时代的生存思考
裂变学院
今天,互联网经济、人工智能、全球化发展对我们的影响,要比我们想象得大得多。在多股合力的相互作用下,这个时代的社会特征、商业特征与之前相比显著不同,我称之为乌卡瑟“VUCASE”。备注:乌卡瑟(VUCASE)这个术语是我自创的,来自于乌卡(VUKA)。VUCA是Volatility(易变性),Uncertainty(不确定性),Complexity(复杂性)、Ambiguity(模糊性)这四个英文单
- 数据呈现高阶技巧:散点图与桑基图的独特价值
在数据可视化的工具箱中,有些图表看似小众,却能解决特定场景的分析难题。当你需要探索两个变量的关联,或追踪复杂的流量路径时,散点图和桑基图会成为强大的武器。本文将深入解析这两种图表的适用场景、分析逻辑和实战案例,帮你突破传统图表的局限,挖掘更深入的业务洞察。一、散点图:探索变量关系,发现群体特征散点图的核心价值在于展示大样本中两个变量的分布关系。它不像柱状图那样聚焦分类对比,也不像折线图那样追踪时间
- 【CNN】卷积神经网络池化- part2
1.池化降采样,减少参数数量,避免过拟合,提高鲁棒性2.池化操作池化操作(也称为下采样,Subsampling)类似卷积操作,使用的也是一个很小的矩阵,叫做池化核,但是池化核本身没有参数,只是通过对输入特征矩阵本身进行运算,它的大小通常是2x2、3x3、4x4等,其中2x2使用频率最高。然后将池化核在卷积得到的输出特征图中进行池化操作,需要注意的是,池化的过程中也有Padding方式以及步长的概念
- 吴恩达 机器学习cs229-学习笔记-更新中
是娜个二叉树!
机器学习学习笔记
吴恩达机器学习cs22901基础概念语言:Matlab/python监督学习定义:获取一组数据集拟合数据从X到Y的映射回归问题:预测的Y是连续的,Y是实数分类问题:分类指的是Y取离散值,输出是离散的两组,正示例和负示例,把所有样本推到这条直线上,用0,1,标识逻辑回归算法,拟合直线区分正,负示例处理相对大量特征的回归算法或者分类算法支持向量机算法:它使用的不是1,2,3,10个输入特征,而是使用无
- python学习打卡:DAY 18 推断聚类后簇的类型
西西西仓鼠
python训练营python学习聚类
@浙大疏锦行聚类后的分析:推断簇的类型知识点回顾:推断簇含义的2个思路:先选特征和后选特征通过可视化图形借助ai定义簇的含义科研逻辑闭环:通过精度判断特征工程价值作业:参考示例代码对心脏病数据集采取类似操作,并且评估特征工程后模型效果有无提升。在聚类分析中,推断簇的类型是理解数据内在结构和业务意义的关键步骤。以下是系统化的推断方法及常见簇类型的总结:一、簇的基本类型明显分离的簇特征:不同簇中任意两
- 基于深度学习的手写数字和符号识别系统:YOLOv5/v6/v7/v8/v10模型实现与UI界面集成
YOLO实战营
深度学习YOLOui人工智能目标检测计算机视觉
1.引言随着人工智能和深度学习技术的发展,手写数字和符号识别已经成为计算机视觉领域的重要研究方向。手写识别在很多实际应用中扮演着关键角色,例如邮政编码识别、表单自动处理和智能教育系统等。传统的手写识别方法通常依赖于复杂的特征工程,而深度学习则能够自动从数据中学习到特征,极大地提高了识别精度和速度。本文将介绍如何构建一个基于YOLO系列模型(YOLOv5、YOLOv6、YOLOv7、YOLOv8、Y
- 智能体学习记录 一
罗同学213
学习
智能体是什么智能体(IntelligentAgent)是一种能够感知周围环境、自主决策并执行行动以实现特定目标的智能化系统或程序。它可以是软件(如聊天机器人)、硬件(如机器人),或两者结合的实体,核心特征包括:自主性:无需人工实时干预,独立运行(如自动驾驶车辆避障)。反应性:实时感知环境变化并快速响应(如智能家居调节温度)。目标导向:基于预设目标优化行动(如推荐系统最大化用户点击率)。学习能力:通
- 超越自卑 追求卓越
荷笑笑
在《儿童教育心理学》中,作者认为追求优越和自卑感是同一心理现象的两个不同方面。儿童的某些特征是环境作用的结果。相比将孩子培养得野心勃勃而言,我们更应该培养孩子的勇敢、坚忍和自信的品质,要让他们学到解决问题的办法。如果教育者能够判断孩子努力的极限在哪儿,那么孩子的成长和发展就更容易获得进步。没有完全相似的孩子,即使在同一个家庭中成长起来,没有完美的小孩,每个人都在自己的局限性中成长,我们只有发现孩子
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo