MySQL之数据存储索引篇(二)

数据库选择b-tree结构作为索引的原因

      要知道数据库选择b-tree结构作为索引的原因,需要先了解计算机科学中的局部性原理和磁盘预读。


局部性原理

      计算机科学中著名的局部性原理:当一个数据被用到时,其附近的数据也通常会马上被使用。程序运行期间所需要的数据通常比较集中。


磁盘预读

      由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率。由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,磁盘的存取速度往往是主存的几百分分之一,因此为了提高效率,要尽量减少磁盘I/O。为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。预读的长度一般为页(page)的整倍数。页是计算机管理存储器的逻辑块,硬件及操作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储块称为一页(在许多操作系统中,页得大小通常为4k),主存和磁盘以页为单位交换数据。当程序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。


      一般使用磁盘I/O次数评价索引结构的优劣。先从B-Tree分析,根据B-Tree的定义,可知检索一次最多需要访问h个节点。数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。为了达到这个目的,在实际实现B-Tree还需要使用如下技巧:

  1. 每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。
  2. B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为O(h)=O(logdN)。一般实际应用中,出度d是非常大的数字,通常超过100,因此h非常小(通常不超过3)。
  3. 而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为O(h),效率明显比B-Tree差很多。

b-tree、b+tree与b*tree的结构介绍

b-tree

定义:

  • 树中每个结点最多含有m个孩子(m>=2);
  • 除根结点和叶子结点外,其它每个结点至少有[ceil(m / 2)]个孩子(其中ceil(x)是一个取上限的函数);
  • 若根结点不是叶子结点,则至少有2个孩子(特殊情况:没有孩子的根结点,即根结点为叶子结点,整棵树只有一个根节点)
  • 所有叶子结点都出现在同一层,叶子结点不包含任何关键字信息(可以看做是外部接点或查询失败的接点,实际上这些结点不存在,指向这些结点的指针都为null);
  • 每个非终端结点中包含有n个关键字信息: (n,P0,K1,P1,K2,P2,……,Kn,Pn)。其中:
    • Ki (i=1…n)为关键字,且关键字按顺序升序排序K(i-1)< Ki。
    • Pi为指向子树根的接点,且指针P(i-1)指向子树中所有结点的关键字均小于Ki,但都大于K(i-1)。
    • 关键字的个数n必须满足: [ceil(m / 2)-1]<= n <= m-1。

示意图

MySQL之数据存储索引篇(二)_第1张图片

优缺点

  • key和data绑定在一起

  • 索引为稀疏索引,索引不是连续的

  • 访问直接命中。

  • B树中同一键值不会出现多次,并且它有可能出现在叶结点,也有可能出现在非叶结点中。而B+树的键一定会出现在叶结点中,并且有可能在非叶结点中也有可能重复出现,以维持B+树的平衡。因为B树键位置不定,且在整个树结构中只出现一次,虽然可以节省存储空间,但使得在插入、删除操作复杂度明显增加。B+树相比来说是一种较好的折中。
    c,B树的查询效率与键在树中的位置有关,最大时间复杂度与B+树相同(在叶结点的时候),最小时间复杂度为1(在根结点的时候)。而B+树的时候复杂度对某建成的树是固定的。


b+tree

定义:

B+树是B-树的变体,也是一种多路搜索树:其定义基本与B-树同,除了:

  • 非叶子结点的子树指针与关键字个数相同;
  • 非叶子结点的子树指针P[i],指向关键字值属于[K[i],K[i+1])的子树(B-树是开区间);
  • 为所有叶子结点增加一个链指针;
  • 所有关键字都在叶子结点出现
  • B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

示意图

MySQL之数据存储索引篇(二)_第2张图片

优缺点

  • 所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好
    是有序的;
  • 不可能在非叶子结点命中;
  • 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;
  • 更适合文件索引系统;
  • B+树更适合外部存储(一般指磁盘存储),由于内节点(非叶子节点)不存储data,所以一个节点可以存储更多的内节点,每个节点能索引的范围更大更精确。也就是说使用B+树单次磁盘IO的信息量相比较B树更大,IO效率更高。
  • mysql是关系型数据库,经常会按照区间来访问某个索引列,B+树的叶子节点间按顺序建立了链指针,加强了区间访问性,所以B+树对索引列上的区间范围查询很友好。而B树每个节点的key和data在一起,无法进行区间查找。
  • B+树还有一个最大的好处,方便扫库,B树必须用中序遍历的方法按序扫库,而B+树直接从叶子结点挨个扫一遍就完了,B+树支持range-query非常方便,而B树不支持。这是数据库选用B+树的最主要原因。

b*tree

定义:

是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;

  • B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);
  • B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

示意图

MySQL之数据存储索引篇(二)_第3张图片

优缺点

  • 在 B+ 树基础上,为非叶子结点也增 加链表指针,将结点的最低利用率从 1/2 提高到 2/3 ;所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

你可能感兴趣的:(MySQL,数据库)