复数指数初学(一)

设复数:z=x+yi
共轭复数: z ‾ = x − y i \overline{z}=x-yi z=xyi
z = x + y i = z + z ‾ 2 + z − z ‾ 2 z=x+yi=\frac{z+\overline{z}}{2}+\frac{z-\overline{z}}{2} z=x+yi=2z+z+2zz
z ‾ = x − y i = z + z ‾ 2 − z − z ‾ 2 \overline{z}=x-yi=\frac{z+\overline{z}}{2}-\frac{z-\overline{z}}{2} z=xyi=2z+z2zz
z z ‾ = ( z + z ‾ 2 + z − z ‾ 2 ) ( z + z ‾ 2 − z − z ‾ 2 ) z\overline{z}=(\frac{z+\overline{z}}{2}+\frac{z-\overline{z}}{2})(\frac{z+\overline{z}}{2}-\frac{z-\overline{z}}{2}) zz=(2z+z+2zz)(2z+z2zz)

你可能感兴趣的:(笔记)