- 机器学习VS深度学习
nfgo
机器学习
机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是人工智能(AI)的两个子领域,它们有许多相似之处,但在技术实现和应用范围上也有显著区别。下面从几个方面对两者进行区分:1.概念层面机器学习:是让计算机通过算法从数据中自动学习和改进的技术。它依赖于手动设计的特征和数学模型来进行学习,常用的模型有决策树、支持向量机、线性回归等。深度学习:是机器学习的一个子领
- 梯度提升机 (Gradient Boosting Machines, GBM)
ALGORITHM LOL
boosting集成学习机器学习
梯度提升机(GradientBoostingMachines,GBM)通俗易懂算法梯度提升机(GradientBoostingMachines,GBM)是一种集成学习算法,主要用于回归和分类问题。GBM本质上是通过训练一系列简单的模型(通常是决策树),然后将这些模型组合起来,从而提高整体预测性能。基本步骤初始模型:首先,我们用一个简单的模型(如一个常数值)作为预测模型,记为F0(x)F_0(x)F
- 分类算法可视化方法
dundunmm
数据挖掘分类数据挖掘人工智能可视化
可视化方法可以用于帮助理解分类算法的决策边界、性能和在不同数据集上的行为。下面列举几个常见的可视化方法。1.决策边界可视化这种方法用于可视化不同分类算法在二维特征空间中如何分隔不同类别。对于理解决策树、支持向量机(SVM)、逻辑回归和k近邻(k-NN)等模型的行为非常有用。importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasets
- 十大机器学习算法-梯度提升决策树(GBDT)
zjwreal
机器学习GBDT机器学习梯度提升提升树梯度提升决策树
简介梯度提升决策树(GBDT)由于准确率高、训练快速等优点,被广泛应用到分类、回归合排序问题中。该算法是一种additive树模型,每棵树学习之前additive树模型的残差。许多研究者相继提出XGBoost、LightGBM等,又进一步提升了GBDT的性能。基本思想提升树-BoostingTree以决策树为基函数的提升方法称为提升树,其决策树可以是分类树或者回归树。决策树模型可以表示为决策树的加
- 决策树基础概论
Hello.Reader
算法算法决策树
1.概述在机器学习领域,决策树(DecisionTree)是一种高度直观且广泛应用的算法。它通过一系列简单的是/否问题,将复杂的决策过程分解为一棵树状结构,使得分类或回归问题的解决过程直观明了。决策树的最大特点在于可解释性强,每个决策节点都代表对特定特征的判断,最终根据这些判断得出结论。决策树适用于多种任务,例如:垃圾邮件分类、病症诊断、股票价格预测等。不仅如此,它还可以处理连续变量和离散变量,并
- 人工智能与机器学习原理精解【18】
叶绿先锋
基础数学与应用数学人工智能机器学习
文章目录决策树基础决策树的定义决策树的计算决策树的例子决策树的例题决策树算法一、决策树的算法过程二、决策树的性质Julia中实现框架使用`DecisionTree.jl`使用`MLJ.jl`Julia包的教程一、了解Julia包生态系统二、安装Julia包1.打开JuliaREPL2.使用Pkg包管理器三、使用Julia包四、查找和了解Julia包1.Julia官方文档2.JuliaHub3.Gi
- 《机器学习》—— XGBoost(xgb.XGBClassifier) 分类器
张小生180
机器学习人工智能
文章目录一、XGBoost分类器的介绍二、XGBoost(xgb.XGBClassifier)分类器与随机森林分类器(RandomForestClassifier)的区别三、XGBoost(xgb.XGBClassifier)分类器代码使用示例一、XGBoost分类器的介绍XGBoost分类器是一种基于梯度提升决策树(GradientBoostingDecisionTree,GBDT)的集成学习算
- 机器学习案例-决策树实现鸢尾花分类
Ausgelebt
机器学习相关python分类
机器学习案例-决策树实现鸢尾花分类目录机器学习案例-决策树实现鸢尾花分类1.选题目的和意义2.主要研究内容2.1决策树算法分类(区别于树的结构和构造算法)2.2决策树算法详解2.3决策树的应用3.算法设计3.1数据分析3.1.1Iris数据集基本介绍3.1.2样本标签值分布3.1.3样本特征值分布3.1.4相关性热力图3.2建立决策树3.3模型调优3.3.1决策树深度(预剪枝)3.3.2选取部分特
- 【人工智能】大话什么是神经网络
路上阳光
什么是人工智能?通俗来讲,就是让机器能像人一样思考。这个无需解释太多,因为通过各种科幻电影我们已经对人工智能很熟悉了。大家现在感兴趣的应该是——如何实现人工智能?从1956年夏季首次提出“人工智能”这一术语开始,科学家们尝试了各种方法来实现它。这些方法包括专家系统,决策树、归纳逻辑、聚类等等,但这些都是假智能。直到人工神经网络技术的出现,才让机器拥有了“真智能”。为什么说之前的方法都是假智能呢?因
- python 连续比较_python实现连续变量最优分箱详解--CART算法
weixin_39834788
python连续比较
关于变量分箱主要分为两大类:有监督型和无监督型对应的分箱方法:A.无监督:(1)等宽(2)等频(3)聚类B.有监督:(1)卡方分箱法(ChiMerge)(2)ID3、C4.5、CART等单变量决策树算法(3)信用评分建模的IV最大化分箱等本篇使用python,基于CART算法对连续变量进行最优分箱由于CART是决策树分类算法,所以相当于是单变量决策树分类。简单介绍下理论:CART是二叉树,每次仅进
- 每天一个数据分析题(五百一十四)- 决策树算法
跟着紫枫学姐学CDA
数据分析题库算法数据分析决策树
决策树由节点和边两种元素组成的结构,决策树中不包含一下哪种结点?A.根结点(rootnode)B.内部结点(internalnode)C.外部结点(externalnode)D.叶结点(leafnode)数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练
- 力扣-N皇后问题
坚持拒绝熬夜
leetcode算法职场和发展
.-力扣(LeetCode)开始的思路由于n=4情况太多我们先画一下n=3的决策树可以知道皇后不能在同一行,因为我的思路是每一行每一行的填写皇后,所以不考虑行的皇后会重叠,主要考虑列的皇后会不会重叠,还有斜线的列皇后可以直接用一个数组col来标记一列中有皇后标记为true而斜线的需要一点数学功底如图可以转化成截距相等,当斜线斜率为1时,可能会有负数的情况,两边同时加上n,因为我想使用下标来标记截距
- AI模型:追求全能还是专精?
Lill_bin
杂谈人工智能分布式zookeeper机器学习游戏
AI模型简介人工智能(AI)模型是人工智能系统的核心,它们是经过训练的算法,能够执行特定的任务,如图像识别、自然语言处理、游戏玩法、预测分析等。AI模型的类型很多,可以根据其功能和应用场景进行分类。常见的AI模型类型包括:监督学习模型:这些模型通过训练数据集学习,数据集中包含了输入和对应的输出标签。例子包括决策树、支持向量机(SVM)、神经网络等。无监督学习模型:这些模型处理没有标签的数据,目的是
- Python知识点:如何使用Python进行时间序列预测
杰哥在此
Python系列python开发语言编程面试
使用Python进行时间序列预测是一个非常常见的任务,可以应用于各种领域,如金融市场预测、销售量预测、天气预报等。时间序列预测的方法有很多,包括统计方法(如ARIMA模型)、机器学习方法(如支持向量机、决策树)、以及深度学习方法(如LSTM网络)。下面是一个简单的时间序列预测流程示例,使用Python和pandas、numpy、以及statsmodels库来实现ARIMA模型的时间序列预测。1.导
- 加州房价--决策树与随机森林
一把年纪学编程
五决策树随机森林机器学习
需要新装包'''decisionTree写在前面要安装http://www.graphviz.org/download/测试是否安装成功dot-version修改环境变量pipinstallgraphviz提示:Successfullyinstalledgraphviz-0.20pipinstallpydotplus'''#===================================im
- CART算法
ziworeborn
CART算法就是分类回归树,它只支持二叉树,既可以作分类树,又可以作回归树。那什么是分类树,什么是回归树呢?假如有个数据集,分别给出了,不同年龄、职业、性别的不同学习时间。如果我构造了一棵决策树,想要基于数据判断这个人的职业身份,这个就属于分类树,因为是从几个分类中来做选择。如果是给定了数据,想要预测这个人的年龄,那就属于回归树。分类树可以处理离散数据,也就是数据种类有限的数据,它输出的是样本的类
- 回溯算法入门
小泽爱刷题
算法
回溯算法三要素抽象地说,解决一个回溯问题,实际上就是遍历一棵决策树的过程,树的每个叶子节点存放着一个合法答案。你把整棵树遍历一遍,把叶子节点上的答案都收集起来,就能得到所有的合法答案。站在回溯树的一个节点上,你只需要思考3个问题:1、路径:也就是已经做出的选择。#记录下已经走过的路2、选择列表:也就是你当前可以做的选择。3、结束条件:也就是到达决策树底层,无法再做选择的条件例如**[2]就是「路径
- Spark MLlib模型训练—回归算法 Random forest regression
不二人生
SparkML实战spark-ml回归随机森林
SparkMLlib模型训练—回归算法Randomforestregression随机森林回归(RandomForestRegression)是一种集成学习方法,通过结合多个决策树的预测结果来提升模型的准确性和稳健性。相较于单一的决策树模型,随机森林通过随机采样和多棵树的集成,减少了模型的方差,从而在处理复杂数据集时展现出更好的性能。本文将详细介绍随机森林回归的原理、实现方法、应用场景,并通过Sc
- R语言使用rpart包构建决策树模型实战、使用prune函数按照指定复杂度对决策树剪枝、使用rpart.plot包中的prp函数可视化训练、剪枝好的决策树
statistics.insight
r语言决策树数据挖掘机器学习
R语言使用rpart包构建决策树模型实战、使用prune函数按照指定复杂度对决策树剪枝、使用rpart.plot包中的prp函数可视化训练、剪枝好的决策树、type参数、extra参数、fallen.leaves参数控制决策树精细化显示目录R语言使用rpart包构建决策树模型、使用prune函数按照指定复杂度对决策树剪枝、使用rpart.plot包中的prp函数可视化训练、剪枝好的决策树、type
- 周工作计划2019-03-25
MikeShine
很久没有写工作计划了。之前一个星期生了病,很难受。上个星期基本上什么都没有干。但是好的一点是,西瓜书基本都看完了。本周工作计划:机器学习分享活动(关于决策树的分享)回看一下西瓜书的东西,每一章把开头总结写一下。老师没有给具体的任务,留了再说吧。
- 决策树(decision tree)
a15957199647
机器学习数据
决策树就是像树结构一样的分类下去,最后来预测输入样本的属于那类标签。本文是本人的学习笔记,所以有些地方也不是很清楚。大概流程就是1.查看子类是否属于同一个类2.如果是,返回类标签,如果不是,找到最佳的分类子集的特征3.划分数据集4.创建分支节点5.对每一个节点重复上述步骤6.返回树首先我们要像一个办法,怎么来确定最佳的分类特征就是为什么要这么划分子集。一般有三种方法:1.Gini不纯度2.信息熵3
- 深度学习100问13:什么是二分类问题
不断持续学习ing
人工智能机器学习自然语言处理
嘿,你知道二分类问题不?这就像是一个“超级裁判”,要把东西分成两大类。一、定义及举例想象一下,生活中有很多时候我们得决定一个东西到底属于哪一边。就像判断一封邮件,是“垃圾邮件”呢,还是“正常邮件”;或者看看一个病人,是“得了某种病”呢,还是“没得病”。二、解决方法要解决二分类问题呀,我们可以找来一些“魔法工具”,也就是机器学习算法。像逻辑回归啦、支持向量机啦、决策树啦等等。这些算法就像聪明的小助手
- 每天一个数据分析题(五百一十二)- 数据标准化
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
在完整的机器学习流程中,数据标准化(DataStandardization)一直是一项重要的处理流程。不同模型对于数据是否标准化的敏感程度不同,以下哪个模型对变量是否标准化不敏感?A.决策树B.KNNC.K-MeansD.SVM数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,S
- 机器学习基础(四)——决策树与随机森林
Bayesian小孙
机器学习基础决策树机器学习随机森林
决策树与随机森林文章目录决策树与随机森林一、知识概要(一)二、决策树使用的算法三、sklearn决策树API四、决策树的案例1.数据清洗2.特征工程3.调用决策树API五、集成学习方法-随机森林1.知识概要(二)2.集成学习API3.随机森林的案例importpandasaspdfromsklearn.feature_extractionimportDictVectorizerfromsklear
- 机器学习 之 决策树与随机森林的实现
SEVEN-YEARS
机器学习决策树随机森林
引言随着互联网技术的发展,垃圾邮件过滤已成为一项重要的任务。机器学习技术,尤其是决策树和随机森林,在解决这类问题时表现出色。本文将介绍随机森林的基本概念,并通过一个具体的案例——筛选垃圾电子邮件——来展示随机森林的实际应用。随机森林简介随机森林是一种基于决策树的集成学习方法,它通过构建多个决策树并综合它们的预测结果来提高准确性和防止过拟合。随机森林的工作原理主要包括以下几个步骤:自助采样:从原始数
- AI大模型副业变现之路,有技术就有收入!
AI大模型-王哥
人工智能AI大模型大模型大模型学习大模型教程大模型入门
在当今时代,AI大模型的应用越来越广泛,利用这些技术开展副业赚钱已成为可能。以下是一份详细的指南,帮助你了解需要学习的内容以及如何操作。一、需要学习的内容基础知识储备(1)数学知识:线性代数、概率论与数理统计、微积分等,这些是理解AI算法的基础。(2)编程技能:掌握Python编程语言,因为Python在AI领域有丰富的库和框架支持。(3)机器学习原理:了解常见的机器学习算法,如线性回归、决策树、
- 随机森林(Random Forest)VS 提升树(Boosting Trees)
高大黑白涂鸦
随机森林boosting算法机器学习人工智能
随机森林(RandomForest)和提升树(BoostingTrees)都是常见的机器学习算法,它们都基于决策树,但使用的策略和目标不同。随机森林(RandomForest)通俗的类比:想象你有一个班级里的多位老师(决策树),你让他们每个人都独立地给出意见(预测)。每个老师的意见可能不完全一致,因为他们对问题的理解和方法不同。然后,你把所有老师的意见汇总,得到一个“班级意见”的结果。优点:减少过
- 每天一个数据分析题(三百五十八)-图表决策树
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
图中是某公司记录销售情况相关的表建立好的多维分析模型,请根据模型回答以下问题:1)该模型属于哪种连接模式?A.星型模式+雪花模式B.星座模式+雪花模式C.星座模式+星型模式+雪花模式D.以上都不对数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案
- 每天一个数据分析题(二百二十)
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
在集成学习的GBDT算法中,每次训练新的决策树的目的是()?A.预测原始数据的标签B.预测上一个模型的残差C.降低模型的偏差D.降低模型的方差题目来源于CDA模拟题库点击此处获取答案
- 每天一个数据分析题(四百九十六)- 决策树模型
跟着紫枫学姐学CDA
数据分析题库数据分析决策树数据挖掘
回归树是可以用于回归的决策树模型,一个回归树对应着输入空间(即特征空间)的一个划分以及在划分单元上的输出值。以下哪个指标可用于回归树中的模型比较A.AdjustedR2B.F-measureC.AUCD.Precision&Recall数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多