编译器:JupyterLab
代码:
import matplotlib as mpl
import matplotlib.pyplot as plt
#matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
for module in mpl,np,pd,sklearn,tf,keras:
print(module.__name__,module.__version__)
matplotlib 3.1.1
numpy 1.17.2
pandas 0.25.1
sklearn 0.21.3
tensorflow 2.1.0
tensorflow_core.python.keras.api._v2.keras 2.2.4-tf
# 泰坦尼克号生存预测
#https://storage.googleapis.com/tf-datasets/titanic/eval.csv
#https://storage.googleapis.com/tf-datasets/titanic/train.csv
train_file="./data/titanic/train.csv"
eval_file="./data/titanic/eval.csv"
train_df=pd.read_csv(train_file)
eval_df=pd.read_csv(eval_file)
print(train_df.head())
print(eval_df.head())
survived sex age n_siblings_spouses parch fare class deck \
0 0 male 22.0 1 0 7.2500 Third unknown
1 1 female 38.0 1 0 71.2833 First C
2 1 female 26.0 0 0 7.9250 Third unknown
3 1 female 35.0 1 0 53.1000 First C
4 0 male 28.0 0 0 8.4583 Third unknown
embark_town alone
0 Southampton n
1 Cherbourg n
2 Southampton y
3 Southampton n
4 Queenstown y
survived sex age n_siblings_spouses parch fare class \
0 0 male 35.0 0 0 8.0500 Third
1 0 male 54.0 0 0 51.8625 First
2 1 female 58.0 0 0 26.5500 First
3 1 female 55.0 0 0 16.0000 Second
4 1 male 34.0 0 0 13.0000 Second
deck embark_town alone
0 unknown Southampton y
1 E Southampton y
2 C Southampton y
3 unknown Southampton y
4 D Southampton y
#将 生存值 剔除出来
y_train=train_df.pop('survived')
y_eval=eval_df.pop('survived')
print(train_df.head())
print(eval_df.head())
print(y_eval)
print(y_train)
# Tf.feature_column使用
categorical_columns=['sex','n_siblings_spouses','parch','class','deck','embark_town','alone']#离散特征
numeric_columns=['age','fare'] #连续特征
feature_columns=[]
for categorical_column in categorical_columns: #离散特征处理
vocab=train_df[categorical_column].unique() # 读取离散特征所有的值
print(categorical_column,vocab)
feature_columns.append(
tf.feature_column.indicator_column(
tf.feature_column.categorical_column_with_vocabulary_list(
categorical_column,vocab)))#离散特征编码化
for categorical_column in numeric_columns:
feature_columns.append(
tf.feature_column.numeric_column(
categorical_column,dtype=tf.float64))
feature_columns.append(tf.feature_column.indicator_column(tf.feature_column.crossed_column(['age','sex'],hash_bucket_size=100)))#表示压缩矩阵
# 构建dataset
def make_dataset(data_df,label_df,epoch=10,shuffle=True,
batch_size=32):
dataset=tf.data.Dataset.from_tensor_slices((dict(data_df),label_df))
if shuffle:
dataset=dataset.shuffle(10000)
dataset=dataset.repeat(epoch).batch(batch_size)
return dataset
baseline_estimator = tf.estimator.BaselineClassifier(model_dir=output_dir,n_classes=2)
baseline_estimator.train(input_fn= lambda : make_dataset(train_df,y_train,epoch=100))
出现错误!!!!!
INFO:tensorflow:Using default config.
INFO:tensorflow:Using config: {'_model_dir': 'baseline_model', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: ONE
}
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from baseline_model/model.ckpt-1960
---------------------------------------------------------------------------
NotFoundError Traceback (most recent call last)
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/client/session.py in _do_call(self, fn, *args)
1366 try:
-> 1367 return fn(*args)
1368 except errors.OpError as e:
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/client/session.py in _run_fn(feed_dict, fetch_list, target_list, options, run_metadata)
1351 return self._call_tf_sessionrun(options, feed_dict, fetch_list,
-> 1352 target_list, run_metadata)
1353
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/client/session.py in _call_tf_sessionrun(self, options, feed_dict, fetch_list, target_list, run_metadata)
1444 fetch_list, target_list,
-> 1445 run_metadata)
1446
NotFoundError: Key training/Ftrl/baseline/bias/accumulator not found in checkpoint
[[{{node save/RestoreV2}}]]
During handling of the above exception, another exception occurred:
NotFoundError Traceback (most recent call last)
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/saver.py in restore(self, sess, save_path)
1289 sess.run(self.saver_def.restore_op_name,
-> 1290 {self.saver_def.filename_tensor_name: save_path})
1291 except errors.NotFoundError as err:
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
959 result = self._run(None, fetches, feed_dict, options_ptr,
--> 960 run_metadata_ptr)
961 if run_metadata:
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
1182 results = self._do_run(handle, final_targets, final_fetches,
-> 1183 feed_dict_tensor, options, run_metadata)
1184 else:
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1360 return self._do_call(_run_fn, feeds, fetches, targets, options,
-> 1361 run_metadata)
1362 else:
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/client/session.py in _do_call(self, fn, *args)
1385 'disable_meta_optimizer = True')
-> 1386 raise type(e)(node_def, op, message)
1387
NotFoundError: Key training/Ftrl/baseline/bias/accumulator not found in checkpoint
[[node save/RestoreV2 (defined at /home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py:1493) ]]
Original stack trace for 'save/RestoreV2':
File "/home/rui/anaconda3/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/home/rui/anaconda3/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/home/rui/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py", line 16, in
app.launch_new_instance()
File "/home/rui/anaconda3/lib/python3.7/site-packages/traitlets/config/application.py", line 664, in launch_instance
app.start()
File "/home/rui/anaconda3/lib/python3.7/site-packages/ipykernel/kernelapp.py", line 563, in start
self.io_loop.start()
File "/home/rui/anaconda3/lib/python3.7/site-packages/tornado/platform/asyncio.py", line 148, in start
self.asyncio_loop.run_forever()
File "/home/rui/anaconda3/lib/python3.7/asyncio/base_events.py", line 534, in run_forever
self._run_once()
File "/home/rui/anaconda3/lib/python3.7/asyncio/base_events.py", line 1771, in _run_once
handle._run()
File "/home/rui/anaconda3/lib/python3.7/asyncio/events.py", line 88, in _run
self._context.run(self._callback, *self._args)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tornado/ioloop.py", line 690, in
lambda f: self._run_callback(functools.partial(callback, future))
File "/home/rui/anaconda3/lib/python3.7/site-packages/tornado/ioloop.py", line 743, in _run_callback
ret = callback()
File "/home/rui/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 787, in inner
self.run()
File "/home/rui/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 748, in run
yielded = self.gen.send(value)
File "/home/rui/anaconda3/lib/python3.7/site-packages/ipykernel/kernelbase.py", line 365, in process_one
yield gen.maybe_future(dispatch(*args))
File "/home/rui/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 209, in wrapper
yielded = next(result)
File "/home/rui/anaconda3/lib/python3.7/site-packages/ipykernel/kernelbase.py", line 272, in dispatch_shell
yield gen.maybe_future(handler(stream, idents, msg))
File "/home/rui/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 209, in wrapper
yielded = next(result)
File "/home/rui/anaconda3/lib/python3.7/site-packages/ipykernel/kernelbase.py", line 542, in execute_request
user_expressions, allow_stdin,
File "/home/rui/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 209, in wrapper
yielded = next(result)
File "/home/rui/anaconda3/lib/python3.7/site-packages/ipykernel/ipkernel.py", line 294, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/home/rui/anaconda3/lib/python3.7/site-packages/ipykernel/zmqshell.py", line 536, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/home/rui/anaconda3/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 2855, in run_cell
raw_cell, store_history, silent, shell_futures)
File "/home/rui/anaconda3/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 2881, in _run_cell
return runner(coro)
File "/home/rui/anaconda3/lib/python3.7/site-packages/IPython/core/async_helpers.py", line 68, in _pseudo_sync_runner
coro.send(None)
File "/home/rui/anaconda3/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3058, in run_cell_async
interactivity=interactivity, compiler=compiler, result=result)
File "/home/rui/anaconda3/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3249, in run_ast_nodes
if (await self.run_code(code, result, async_=asy)):
File "/home/rui/anaconda3/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3326, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "", line 2, in
baseline_estimator.train(input_fn= lambda : make_dataset(train_df,y_train,epoch=100))
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 374, in train
loss = self._train_model(input_fn, hooks, saving_listeners)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 1164, in _train_model
return self._train_model_default(input_fn, hooks, saving_listeners)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 1198, in _train_model_default
saving_listeners)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 1493, in _train_with_estimator_spec
log_step_count_steps=log_step_count_steps) as mon_sess:
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 604, in MonitoredTrainingSession
stop_grace_period_secs=stop_grace_period_secs)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 1038, in __init__
stop_grace_period_secs=stop_grace_period_secs)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 749, in __init__
self._sess = _RecoverableSession(self._coordinated_creator)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 1231, in __init__
_WrappedSession.__init__(self, self._create_session())
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 1236, in _create_session
return self._sess_creator.create_session()
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 902, in create_session
self.tf_sess = self._session_creator.create_session()
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 660, in create_session
self._scaffold.finalize()
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 243, in finalize
self._saver.build()
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/saver.py", line 840, in build
self._build(self._filename, build_save=True, build_restore=True)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/saver.py", line 878, in _build
build_restore=build_restore)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/saver.py", line 502, in _build_internal
restore_sequentially, reshape)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/saver.py", line 381, in _AddShardedRestoreOps
name="restore_shard"))
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/saver.py", line 328, in _AddRestoreOps
restore_sequentially)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/saver.py", line 575, in bulk_restore
return io_ops.restore_v2(filename_tensor, names, slices, dtypes)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/ops/gen_io_ops.py", line 1506, in restore_v2
name=name)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/framework/op_def_library.py", line 742, in _apply_op_helper
attrs=attr_protos, op_def=op_def)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/framework/ops.py", line 3322, in _create_op_internal
op_def=op_def)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/framework/ops.py", line 1756, in __init__
self._traceback = tf_stack.extract_stack()
During handling of the above exception, another exception occurred:
RuntimeError Traceback (most recent call last)
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/py_checkpoint_reader.py in get_tensor(self, tensor_str)
69 return CheckpointReader.CheckpointReader_GetTensor(
---> 70 self, compat.as_bytes(tensor_str))
71 # TODO(b/143319754): Remove the RuntimeError casting logic once we resolve the
RuntimeError: Key _CHECKPOINTABLE_OBJECT_GRAPH not found in checkpoint
During handling of the above exception, another exception occurred:
NotFoundError Traceback (most recent call last)
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/saver.py in restore(self, sess, save_path)
1299 try:
-> 1300 names_to_keys = object_graph_key_mapping(save_path)
1301 except errors.NotFoundError:
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/saver.py in object_graph_key_mapping(checkpoint_path)
1617 reader = py_checkpoint_reader.NewCheckpointReader(checkpoint_path)
-> 1618 object_graph_string = reader.get_tensor(trackable.OBJECT_GRAPH_PROTO_KEY)
1619 object_graph_proto = (trackable_object_graph_pb2.TrackableObjectGraph())
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/py_checkpoint_reader.py in get_tensor(self, tensor_str)
73 except RuntimeError as e:
---> 74 error_translator(e)
75
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/py_checkpoint_reader.py in error_translator(e)
34 'matching files for') in error_message:
---> 35 raise errors_impl.NotFoundError(None, None, error_message)
36 elif 'Sliced checkpoints are not supported' in error_message or (
NotFoundError: Key _CHECKPOINTABLE_OBJECT_GRAPH not found in checkpoint
During handling of the above exception, another exception occurred:
NotFoundError Traceback (most recent call last)
in
1 baseline_estimator = tf.estimator.BaselineClassifier(model_dir=output_dir,n_classes=2)
----> 2 baseline_estimator.train(input_fn= lambda : make_dataset(train_df,y_train,epoch=100))
~/anaconda3/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py in train(self, input_fn, hooks, steps, max_steps, saving_listeners)
372
373 saving_listeners = _check_listeners_type(saving_listeners)
--> 374 loss = self._train_model(input_fn, hooks, saving_listeners)
375 logging.info('Loss for final step: %s.', loss)
376 return self
~/anaconda3/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py in _train_model(self, input_fn, hooks, saving_listeners)
1162 return self._train_model_distributed(input_fn, hooks, saving_listeners)
1163 else:
-> 1164 return self._train_model_default(input_fn, hooks, saving_listeners)
1165
1166 def _train_model_default(self, input_fn, hooks, saving_listeners):
~/anaconda3/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py in _train_model_default(self, input_fn, hooks, saving_listeners)
1196 return self._train_with_estimator_spec(estimator_spec, worker_hooks,
1197 hooks, global_step_tensor,
-> 1198 saving_listeners)
1199
1200 def _train_model_distributed(self, input_fn, hooks, saving_listeners):
~/anaconda3/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py in _train_with_estimator_spec(self, estimator_spec, worker_hooks, hooks, global_step_tensor, saving_listeners)
1491 config=self._session_config,
1492 max_wait_secs=self._config.session_creation_timeout_secs,
-> 1493 log_step_count_steps=log_step_count_steps) as mon_sess:
1494 loss = None
1495 any_step_done = False
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py in MonitoredTrainingSession(master, is_chief, checkpoint_dir, scaffold, hooks, chief_only_hooks, save_checkpoint_secs, save_summaries_steps, save_summaries_secs, config, stop_grace_period_secs, log_step_count_steps, max_wait_secs, save_checkpoint_steps, summary_dir, save_graph_def)
602 session_creator=session_creator,
603 hooks=all_hooks,
--> 604 stop_grace_period_secs=stop_grace_period_secs)
605
606
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py in __init__(self, session_creator, hooks, stop_grace_period_secs)
1036 hooks,
1037 should_recover=True,
-> 1038 stop_grace_period_secs=stop_grace_period_secs)
1039
1040
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py in __init__(self, session_creator, hooks, should_recover, stop_grace_period_secs)
747 stop_grace_period_secs=stop_grace_period_secs)
748 if should_recover:
--> 749 self._sess = _RecoverableSession(self._coordinated_creator)
750 else:
751 self._sess = self._coordinated_creator.create_session()
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py in __init__(self, sess_creator)
1229 """
1230 self._sess_creator = sess_creator
-> 1231 _WrappedSession.__init__(self, self._create_session())
1232
1233 def _create_session(self):
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py in _create_session(self)
1234 while True:
1235 try:
-> 1236 return self._sess_creator.create_session()
1237 except _PREEMPTION_ERRORS as e:
1238 logging.info(
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py in create_session(self)
900 """Creates a coordinated session."""
901 # Keep the tf_sess for unit testing.
--> 902 self.tf_sess = self._session_creator.create_session()
903 # We don't want coordinator to suppress any exception.
904 self.coord = coordinator.Coordinator(clean_stop_exception_types=[])
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py in create_session(self)
667 init_op=self._scaffold.init_op,
668 init_feed_dict=self._scaffold.init_feed_dict,
--> 669 init_fn=self._scaffold.init_fn)
670
671
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/session_manager.py in prepare_session(self, master, init_op, saver, checkpoint_dir, checkpoint_filename_with_path, wait_for_checkpoint, max_wait_secs, config, init_feed_dict, init_fn)
292 wait_for_checkpoint=wait_for_checkpoint,
293 max_wait_secs=max_wait_secs,
--> 294 config=config)
295 if not is_loaded_from_checkpoint:
296 if init_op is None and not init_fn and self._local_init_op is None:
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/session_manager.py in _restore_checkpoint(self, master, saver, checkpoint_dir, checkpoint_filename_with_path, wait_for_checkpoint, max_wait_secs, config)
222
223 # Loads the checkpoint.
--> 224 saver.restore(sess, ckpt.model_checkpoint_path)
225 saver.recover_last_checkpoints(ckpt.all_model_checkpoint_paths)
226 return sess, True
~/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/saver.py in restore(self, sess, save_path)
1304 # a helpful message (b/110263146)
1305 raise _wrap_restore_error_with_msg(
-> 1306 err, "a Variable name or other graph key that is missing")
1307
1308 # This is an object-based checkpoint. We'll print a warning and then do
NotFoundError: Restoring from checkpoint failed. This is most likely due to a Variable name or other graph key that is missing from the checkpoint. Please ensure that you have not altered the graph expected based on the checkpoint. Original error:
Key training/Ftrl/baseline/bias/accumulator not found in checkpoint
[[node save/RestoreV2 (defined at /home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py:1493) ]]
Original stack trace for 'save/RestoreV2':
File "/home/rui/anaconda3/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/home/rui/anaconda3/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/home/rui/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py", line 16, in
app.launch_new_instance()
File "/home/rui/anaconda3/lib/python3.7/site-packages/traitlets/config/application.py", line 664, in launch_instance
app.start()
File "/home/rui/anaconda3/lib/python3.7/site-packages/ipykernel/kernelapp.py", line 563, in start
self.io_loop.start()
File "/home/rui/anaconda3/lib/python3.7/site-packages/tornado/platform/asyncio.py", line 148, in start
self.asyncio_loop.run_forever()
File "/home/rui/anaconda3/lib/python3.7/asyncio/base_events.py", line 534, in run_forever
self._run_once()
File "/home/rui/anaconda3/lib/python3.7/asyncio/base_events.py", line 1771, in _run_once
handle._run()
File "/home/rui/anaconda3/lib/python3.7/asyncio/events.py", line 88, in _run
self._context.run(self._callback, *self._args)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tornado/ioloop.py", line 690, in
lambda f: self._run_callback(functools.partial(callback, future))
File "/home/rui/anaconda3/lib/python3.7/site-packages/tornado/ioloop.py", line 743, in _run_callback
ret = callback()
File "/home/rui/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 787, in inner
self.run()
File "/home/rui/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 748, in run
yielded = self.gen.send(value)
File "/home/rui/anaconda3/lib/python3.7/site-packages/ipykernel/kernelbase.py", line 365, in process_one
yield gen.maybe_future(dispatch(*args))
File "/home/rui/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 209, in wrapper
yielded = next(result)
File "/home/rui/anaconda3/lib/python3.7/site-packages/ipykernel/kernelbase.py", line 272, in dispatch_shell
yield gen.maybe_future(handler(stream, idents, msg))
File "/home/rui/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 209, in wrapper
yielded = next(result)
File "/home/rui/anaconda3/lib/python3.7/site-packages/ipykernel/kernelbase.py", line 542, in execute_request
user_expressions, allow_stdin,
File "/home/rui/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 209, in wrapper
yielded = next(result)
File "/home/rui/anaconda3/lib/python3.7/site-packages/ipykernel/ipkernel.py", line 294, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/home/rui/anaconda3/lib/python3.7/site-packages/ipykernel/zmqshell.py", line 536, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/home/rui/anaconda3/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 2855, in run_cell
raw_cell, store_history, silent, shell_futures)
File "/home/rui/anaconda3/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 2881, in _run_cell
return runner(coro)
File "/home/rui/anaconda3/lib/python3.7/site-packages/IPython/core/async_helpers.py", line 68, in _pseudo_sync_runner
coro.send(None)
File "/home/rui/anaconda3/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3058, in run_cell_async
interactivity=interactivity, compiler=compiler, result=result)
File "/home/rui/anaconda3/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3249, in run_ast_nodes
if (await self.run_code(code, result, async_=asy)):
File "/home/rui/anaconda3/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3326, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "", line 2, in
baseline_estimator.train(input_fn= lambda : make_dataset(train_df,y_train,epoch=100))
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 374, in train
loss = self._train_model(input_fn, hooks, saving_listeners)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 1164, in _train_model
return self._train_model_default(input_fn, hooks, saving_listeners)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 1198, in _train_model_default
saving_listeners)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 1493, in _train_with_estimator_spec
log_step_count_steps=log_step_count_steps) as mon_sess:
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 604, in MonitoredTrainingSession
stop_grace_period_secs=stop_grace_period_secs)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 1038, in __init__
stop_grace_period_secs=stop_grace_period_secs)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 749, in __init__
self._sess = _RecoverableSession(self._coordinated_creator)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 1231, in __init__
_WrappedSession.__init__(self, self._create_session())
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 1236, in _create_session
return self._sess_creator.create_session()
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 902, in create_session
self.tf_sess = self._session_creator.create_session()
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 660, in create_session
self._scaffold.finalize()
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 243, in finalize
self._saver.build()
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/saver.py", line 840, in build
self._build(self._filename, build_save=True, build_restore=True)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/saver.py", line 878, in _build
build_restore=build_restore)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/saver.py", line 502, in _build_internal
restore_sequentially, reshape)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/saver.py", line 381, in _AddShardedRestoreOps
name="restore_shard"))
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/saver.py", line 328, in _AddRestoreOps
restore_sequentially)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/training/saver.py", line 575, in bulk_restore
return io_ops.restore_v2(filename_tensor, names, slices, dtypes)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/ops/gen_io_ops.py", line 1506, in restore_v2
name=name)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/framework/op_def_library.py", line 742, in _apply_op_helper
attrs=attr_protos, op_def=op_def)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/framework/ops.py", line 3322, in _create_op_internal
op_def=op_def)
File "/home/rui/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/framework/ops.py", line 1756, in __init__
self._traceback = tf_stack.extract_stack()
其中会提示NotFoundError 和 GetNext()初始化错误问题
直接将预测器改为baseline_estimator = tf.compat.v1.estimator.BaselineClassifier(model_dir=output_dir,n_classes=2)
即可解决问题 !!! 我看的教学视频tensorflow是2.0运行tf.estimator.BaselineClassifier没有问题 自己用的是tf2.1(stable),竟然会出现问题。浪费我一下午时间搜解决方案,可是没有发现有类似问题出现,可能是自己环境原因,希望这篇文章能够帮到像我一样的倒霉蛋子。