import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
import os
import tensorflow as tf
from tensorflow import keras
# set GPU
tf.debugging.set_log_device_placement(True)
gpus = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_visible_devices(gpus[0], 'GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
print(len(gpus))
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(logical_gpus))
# read data-sensor.csv
dataframe = pd.read_csv('data-sensor.csv')
pd_value = dataframe.values
look_back = 4
features = 28
look_back:一匹数据所含的数据个数
features:每个数据所拥有的特征数
# ========= split dataset ===================
train_size = int(len(pd_value) * 0.8)
trainlist = pd_value[:train_size]
testlist = pd_value[train_size:]
# ========= numpy train ===========
def create_dataset(dataset, look_back):
#这里的look_back与timestep相同
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back)]
dataX.append(a)
dataY.append(dataset[i + look_back])
return numpy.array(dataX),numpy.array(dataY)
#训练数据太少 look_back并不能过大
trainX,trainY = create_dataset(trainlist,look_back)
testX,testY = create_dataset(testlist,look_back)
# ========== set dataset ======================
trainX = numpy.reshape(trainX, (trainX.shape[0], trainX.shape[1], features))
testX = numpy.reshape(testX, (testX.shape[0], testX.shape[1] , features))
# create and fit the LSTM network
model = tf.keras.Sequential()
model.add(tf.keras.layers.LSTM(64, activation='relu', return_sequences=True, input_shape=(look_back, features)))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.LSTM(32, activation='relu'))
model.add(tf.keras.layers.Dense(features))
model.compile(metrics=['accuracy'], loss='mean_squared_error', optimizer='adam')
model.summary()
history = model.fit(trainX, trainY, validation_data=(testX, testY),epochs=15, verbose=1).history
model.save("lstm-model.h5")
plt.plot(history['loss'], linewidth=2, label='Train')
plt.plot(history['val_loss'], linewidth=2, label='Test')
plt.legend(loc='upper right')
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
#plt.ylim(ymin=0.70,ymax=1)
plt.show()
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
训练集情况
plt.plot(trainY[:100,1])
plt.plot(trainPredict[:100,1])
plt.show()
测试集情况
plt.plot(testY[:100,1])
plt.plot(testPredict[:100,1])
plt.plot()
# set predict_data
predict_begin = 1
predict_num = 100
predict_result = np.zeros((predict_num+look_back,features),dtype=float)
for i in range(look_back):
predict_result[i] = testX[-predict_begin:][0,i]
预测后100个数据情况,从最后一个数据开始进行时间序列预测。构建预测结果变量predict_result
# predict
for i in range(predict_num):
begin_data = np.reshape(predict_result[i:i+look_back,], (predict_begin, look_back, features))
predict_data = model.predict(begin_data)
predict_result[look_back+i] = predict_data
buff = predict_result[i+1:i+look_back]
predict_call_back = np.append(buff,predict_data,axis=0)
构建滚动预测数据,每次取四行数据进行预测。
预测后,将原预测前的三行数据与预测后的结果进行拼接,组成四行数据进行下一轮的预测。
# show plot
plt.plot(predict_result[-predict_num:,5])
plt.plot()
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
import os
import tensorflow as tf
from tensorflow import keras
# set GPU
tf.debugging.set_log_device_placement(True)
gpus = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_visible_devices(gpus[0], 'GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
print(len(gpus))
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(logical_gpus))
# read data-sensor.csv
dataframe = pd.read_csv('data-sensor.csv')
pd_value = dataframe.values
# ========= split dataset ===================
train_size = int(len(pd_value) * 0.8)
trainlist = pd_value[:train_size]
testlist = pd_value[train_size:]
look_back = 4
features = 28
step_out = 1
# ========= numpy train ===========
def create_dataset(dataset, look_back):
#这里的look_back与timestep相同
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back)]
dataX.append(a)
dataY.append(dataset[i + look_back])
return numpy.array(dataX),numpy.array(dataY)
#训练数据太少 look_back并不能过大
trainX,trainY = create_dataset(trainlist,look_back)
testX,testY = create_dataset(testlist,look_back)
# ========== set dataset ======================
trainX = numpy.reshape(trainX, (trainX.shape[0], trainX.shape[1], features))
testX = numpy.reshape(testX, (testX.shape[0], testX.shape[1] , features))
# create and fit the LSTM network
model = tf.keras.Sequential()
model.add(tf.keras.layers.LSTM(64, activation='relu', return_sequences=True, input_shape=(look_back, features)))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.LSTM(32, activation='relu'))
model.add(tf.keras.layers.Dense(features))
#model.compile(optimizer='adam', loss='mse')
model.compile(metrics=['accuracy'], loss='mean_squared_error', optimizer='adam')
model.summary()
history = model.fit(trainX, trainY, validation_data=(testX, testY),epochs=15, verbose=1).history
model.save("lstm-model.h5")
plt.plot(history['loss'], linewidth=2, label='Train')
plt.plot(history['val_loss'], linewidth=2, label='Test')
plt.legend(loc='upper right')
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
#plt.ylim(ymin=0.70,ymax=1)
plt.show()
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
plt.plot(trainY[:100,1])
plt.plot(trainPredict[:100,1])
plt.show()
plt.plot(testY[:100,1])
plt.plot(testPredict[:100,1])
plt.plot()
# set predict_data
predict_begin = 1
predict_num = 100
predict_result = np.zeros((predict_num+look_back,features),dtype=float)
for i in range(look_back):
predict_result[i] = testX[-predict_begin:][0,i]
# predict
for i in range(predict_num):
begin_data = np.reshape(predict_result[i:i+look_back,], (predict_begin, look_back, features))
predict_data = model.predict(begin_data)
predict_result[look_back+i] = predict_data
buff = predict_result[i+1:i+look_back]
predict_call_back = np.append(buff,predict_data,axis=0)
# show plot
plt.plot(predict_result[-predict_num:,5])
plt.plot()
参考文档:
简单粗暴LSTM:LSTM进行时间序列预测
Kesci: Keras 实现 LSTM——时间序列预测
【tensorflow2.0】处理时间序列数据
时间序列预测09:如何开发LSTM实现时间序列预测详解 03 Multi-step LSTM
Python:利用LSTM预测时间序列数据
python利用LSTM进行时间序列分析预测
LSTM时间序列预测及网络层搭建
LSTM与Prophet时间序列预测实验BraveY